近红外 近红外线 near infrared 近红外概述 近红外定义 近红外光谱分析 近红外工作原理 近红外特点 近红外分析仪器

近红外光(Near Infrared,NIR)是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。近红外区域是人们最早发现的非可见光区域。

近红外

分析仪器简介

高频红外碳硫分析仪器 高频红外碳硫分析仪配合高频感应燃烧炉能快速、准确地测定铁金、不锈钢碳钢、合金钢、铸铁、球铁、有色金属、稀土金属、水泥、矿石、焦炭、煤,炉渣、陶瓷、催化剂、铸造型芯砂、铁矿、无机物有机物及其它材料中碳、硫两元素的含量。

分析仪器主要技术参数

★测量范围:

碳:0.00001%~99.9999%

硫:0.00001%~99.9999%

★测量时间:25~60秒可调 (一般在35秒)

★测量精度:符合国家计量检定规程JJG395-97标准

★测量准确度:碳:符合ISO9556~94标准 硫:符合ISO4935~94标准

分析仪器主要特点

★大功率高频电路设计,采用高频功率管,减轻高频燃烧系统的负载,提高使用寿命 ;

★可根据客户需求,任意设置碳吸收池、硫池吸收数量,保证了高碳、低碳、高硫、低硫测定的精密度和准确度;

★不需动力气体,化学试剂,只需使用氧气;

★拥有自我诊断和保护功能,出现错误自动报警,并可进行远程诊断;

★全中文菜单操作,测试软件功能齐全,对任何操作人员均不存在障碍;

★品牌电脑,进口品牌电子天平等均保证了操作的稳定性和数据的可靠性。

分析仪器选购

1、根据实际需求进行选购,产品的实用性格外重要,如测试分析仪器最好选择准确快速的,如果是用于来料检验,则最好选择能够打印测试报告的。如果是用于成品检验,那么仪器的权威性就很重要了。尽管专业性的仪器测试精度更强,但是如果是用于单一产品检验则专业性要求就不必太强。[1]

2、综合考虑产品质量、价格及服务。如果国外著名光谱产品比内同类产品性能要优,但价格也高。

3、选购时考虑企业规模,以控制成本。大型企业根据需要可配置高频红外碳硫分析仪,直读光谱仪等高端设备,而中小型企业可以配备非水法碳硫分析仪、721型分光光度计、国产分析天平等设备来筹建实验室。

4、分析仪器的售后服务是选购时一定要考虑的因素,尤其是仪器保修期外的保养和零配件、耗材的供应等。售后服务有保障的仪器会让你日后使用维修更便捷。

生化分析仪是医院最基本的检验设备,它利用可见光、紫外光、荧光、散射光和氧化电极、离子选择电极、酶电极、同位素计数等检测技术,主要用于检测人体的生理、生化参数,如肝功能、肾功能、血脂、心功能、微量元素及其电解质,同时还能测量激素及微量蛋白。[1]

分析仪器类别

1. 半自动生化分析仪

2. 小型全自动生化分析仪

3. 干式生化分析仪

4. 分立式全自动生化分析仪

分析仪器质量考核

仪器安装完成后,按照技术参数逐条进行测试。主要测试指标如下:

(1)检测速度测试

(2)重复性测试

(3)线性度测试

(4)最小加样量测试

(5)计量检测

(6)选择好的试剂

分析仪器分类

分析仪器的分类[2]

(一)、理化分析仪器

(二)、生化分析仪器

(三)、物化分析仪器

(四)、常规实验仪器

(五)、专用分析仪器

(六)、样品处理设备

(七)、电子仪器设备

理化分析仪器

1、色谱类分析仪器

2、光谱类分析仪器

3、电化学分析仪器

4、元素分析仪器

5、光学分析仪器

6、玻璃仪器

1、色谱分析 1)气相色谱仪 2)液相色谱仪 3)凝胶色谱仪 4)离子色谱仪 5)质谱仪6)薄层色谱仪7)毛细管电泳8)其他

2、光谱分析 1)可见分光光度计2)紫外可见分光光度计 3)近红外分光光度计 4)红外分光光度计 5)原子吸收分光光度计 6)原子荧光分光光度计 7)荧光分光光度计 8)光声分光光度计 9)光电直读光谱仪 10)ICP光谱仪 11)MPT光谱仪 12)激光光谱仪 13)拉曼分光光度计 14)光谱成像仪 15)旋光仪 16)色度仪 17)其他

3、电化学分析产品 1)电导分析/PH分析 2)电位分析 3)电解库仑分析4)极谱伏安分析5)流动注射分析仪 6)滴定仪 7)电泳仪8)COD9)BOD10)其他

生化仪器分类

1、分子生物学类仪器

2、细胞生物学类仪器

3、微生物学类仪器

4、通用生物实验仪器

1、分子生物学类仪器 1)PCR仪2)电泳仪3)凝胶成像系统4)酶标仪/洗板机

2、细胞生物学类仪器 1)显微镜 2)高压破碎仪3)超声波破碎仪4)多参数生化分析仪

3、微生物学类仪器 1)菌落计数器2)全自动微生物鉴定仪

4、通用生物实验仪器 1)高压灭菌器 2)离心机 3)移液器 4)培养箱

物化分析仪器

1、粘度计

2、熔点仪

3、密度计

常规实验仪器

1、干燥箱

2、电炉

3、低温冰箱/保存箱

4、摇床(振荡器)

5、灭菌器

6、恒温水浴/油浴

7、超净工作台

8、培养箱

专用分析仪器

1、水质专用分析仪

2、药物专用分析仪 1)崩解仪2)药物溶出度仪3)片剂硬度计4)澄明度测定仪5)热源测温仪6)脆碎度仪

3、环保专用仪器 1)声级计2)照度计3)大气采样器4)辐射仪

4、食品专用仪器 1)粗脂肪测定仪2)定氮仪3)粗纤维测定仪4)黄曲霉素测定仪.

样品前处理设备

1、微波消解 2、旋转蒸发仪 3、固相萃取/固相微萃取 4、快速溶剂萃取仪5、GPC凝胶渗透仪

分析仪器红外碳硫

管式红外碳硫分析仪器配合高温管式炉能快速、准确地测定钢铁、合金、有色金属、稀土金属、水泥、矿石、焦炭、煤、炉渣、陶瓷、催化剂、铸造型芯砂、铁矿、无机物及其它材料中碳、硫两元。

分析仪器技术参数

★测量范围:

碳:ω(C)0.001%—6.000%(可扩至99.999%)

硫:ω(S)0.0005%—2.000%(可扩至99.999%)

★分析误差:碳优于国标GB/硫优于国标GB/T223.68—1997

★分析时间:25—60秒可调,一般在35秒左右

★电子天平:称量范围:0—120g 读数精度:0.001g

★工作环境:室内温度:10-30℃ 相对湿度:小于75%

分析仪器主要特点

★采用低噪声、高灵敏度、高稳定性的红外探测器;

★整机模块化设计,提高了仪器的可靠性;

★电子天平自动联机;

★WINDOWS全中文操作界面,操作方便,易于掌握;

★软件功能齐全,提供文件帮助、系统监测、通道选择、数理统计、结果校正、断点修正、系统诊断等四十多项功能;

★动态显示分析过程中的各项数据和碳、硫释放曲线;

★特制高温管式炉,温度可调,适合于不同材质样品分析要求;

★高效合金除尘器,最大限度减少粉尘干扰;

★测量线性范围宽,并可扩展;

分析仪器碳硫联测

分析仪器技术性能

1.分析范围:碳:0.02~12.00% (减少称量可扩大测量范围)

硫:0.003~2.00%

2.分析时间:45秒 (已含称样时间)

3.分析误差:符合国家标准 GB223.69-1997 GB223.68-1997

4.环境温度:5℃-40℃

5.动力气体:氧气压力0.02-0.04Mpa

6.电源电压:220v±10% 50Hz 建议使用民用电路或使用高精度电子交流式稳压器

分析仪器结构原理

1.本仪器由电弧燃烧炉、分析箱组成。

2.试样在基本处于室温的富氧条件下,加入少量助熔剂,由电极产生电弧点火,极短时间内产生高温,待样品燃烧,将试样中的碳和硫转化成二氧化碳和二氧化硫逸出,由单片机控制对其进行含量的分析测量。测碳采用气体容量法,测硫采用碘量法。

3.气路、液路系统。

DF表示电磁阀,用于控制气路,平时不通电,衔铁堵住接管嘴2、3,通电时,衔铁上移,堵住接管嘴3,接管嘴1、2通。

图中BF表示玻璃电磁阀,用于控制液路。平时不通电,堵住液路,通电时沟通液路。

下面说明基本工作过程:

初始状态,低压氧气被DF1、DF6堵死,不消耗氧气,事先水准瓶、贮气瓶和滴定液瓶中都存放有一定的液体。

1.按 “对零”按钮,DF4通电,量气筒通大气,水准瓶与量气筒成连通管,最后两边液面相平,可用增减水准瓶内液体或调整碳的直读标尺的方法,使量气筒内的最低水平面与直读标尺的零刻度线相平,松开“对零”按钮,DF4断电,量气筒与大气隔断。如量气筒水位不能到达量气筒下方的零位,可重复几次。“对零”工作调试结束。

2.按一下“准备”按钮,DF1、DF4、DF6、BF通电,低压氧气将液体从水准瓶压入量气筒,直到液体注满量气筒碰到DJ3、DJ5时,自动使DF1、DF4断电,液体充满量气筒;同时BF通电沟通液路,放去硫吸收杯中的多余液体;DF6通电,低压氧气进入滴定液瓶,将滴定液压入滴定管、直到DJ4、DJ5都接触到滴定液时,使DF6自动断电,多余的滴定液因虹吸作用自动返回滴定液瓶,保持滴定管内溶液准确对零。在DF6断电时,BF也断电。

3.按一下“分析”按钮,仪器自动进行空白调整,并自动加满溶液。电弧燃烧炉自动引弧,燃气进入硫吸收杯,这时约6秒钟左右。DF3 通电,燃气进入量气筒(即开始取样),量气筒液面开始下降,吸取到一定的燃气后DF3断电(调节水准瓶上DJ2可实现),同时DF4通电, 量气筒通大气,使量气筒内的气体恢复到一定的温度、压力和体积的状态。延时约10秒钟,DF4断电,DF5、DF1通电。吸收灯亮,量气筒内的气体被压入贮气瓶,在这个过程中气体通过吸收管,二氧化碳吸收。气体全压出量气筒,即量气筒内的液体接触到DJ3、DJ5时,DF1断电。因液面压力差,贮气瓶体重新被压回量气筒,待气压达到平衡,DF5断电,由于二氧化碳被吸收,气体体积减少,吸收前后的体积差在本仪器上的形成一个高度差,根据减少的体积也就得到碳的含量。硫的测定是仪器根据确定的终点色由DF7控制自动滴定,在分析结束后,即可读数并可打印结果。

分析仪器主要特点

★分析精度高,特别适合于分析难熔材料,如:硬质合金、钨粉、锰粉、钴粉、各种铁合金、焦碳、煤、炉渣、玻璃、石灰、矿石、纯金属等;

★配备电子天平可不定量称样,提高检测速度,检测结果显示并打印;

★单片机控制电路,彻底清除人为误差,性能稳定可靠,抗干扰性能强;

★采用国际先进的传感技术,使用进口传感器,测试结果不需任何换算即可数显直读并自动打印;

★精度高,采用气体容量法定碳,碘量法定硫,全自动测定;

★ 包含管式分析仪所有功能;

★通用仪器接口,便于更新升级。

分析仪器气相色谱

分析仪器特点

气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在分离分析方面,具有如下一些特点:

1.高灵敏度:可检出10-10 克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。

2.高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。

3.高效能:可把组分复杂的样品分离成单组分。

4.速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。

5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。

6.所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。

7.设备和操作比较简单仪器价格便宜。

分析仪器分离原理

气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。

分析仪器分类

凡是以气相作为流动相的色谱技术,通称为气相色谱。一般可按以下几方面分类:

1.按固定相聚集态分类:

1.气固色谱:固定相是固体吸附剂。

2.气液色谱:固定相是涂在担体表面的液体。

2.按过程物理化学原理分类:

1.吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。

2.分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。

3.其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度变化发展而来的热色谱等等。

3.按固定相类型分类:

1.柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。

2.纸色谱:以滤纸为载体。

3.薄膜色谱:固定相为粉末压成的薄漠。

4.按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。

分析仪器简析装置流程

气相色谱法简单分析装置流程基本由四个部份组成:

1.气源部分 2、进样装置 3、色谱柱 4、鉴定器和记录器

分析仪器调试维修

(1)观察法 通过人的眼睛主观察、发现故障的方法称为观察法。该方法主要用于检查零件变质损坏、电路板漏焊、虚焊、线间的短路饶焦、断线和元器件焊错等。

(2)触模法 通过人的手指或其他部位去触模元器件,从而发现元器件是否有过热或应该发热而不热的现象(如电源变压器及电子管等应该有发热现象),从而间接地判断故障部位的方法,称为触授法。

(3)静态测量法 这主要是通过万用表去测量线路中的直流工作电压相电流,从而确定故障。迟是排除故障常用的—种方法,它对于测试线性电路尤为重要。

(4)动态观察法 通过示按器去观察有关点的波形,从而寻找故障相排除故障的方法称为动态观实法。

(5)跟踪法 在寻找故障的过程中发现一点线索,顺着线索追查下去的方法称为跟踪法。

(6)分割法 在查找故障的过程中,通过拔掉部分转括、拔下部分电路板或在电路板上断线来逐步缩小故障的范围,最后把故障点孤立出来的方法,称为分割法。

(7)替换法 通过更换电细线、电路板、电子管或其他每部件,以确定故障在某一范围的方法称为替换法。

(8)模拟法 在查寻故障过程中,可通过分别测试无故障仪器和行故阳仪器的相同点,将所得的数据进行比较来确定故障的方法,称为模拟法。

(9)试探法 在查寻故障的过程中,如经测量和分析,几种原因都能造成此种故障,那么此时,可先试探用一种方法去排除故障,如无效,再改用另一种方法试探去排除故障,这称为试探法。

(10)局部受热法 仪器由于湿度升高而发生故障,通常用局部受热泌夫排除。比如,其一仪器在温度40℃时,不能正常工作,而温度降低后又能正常工作。此队可将仪器恢复在常温下工他用电热吹风机或电烙铁使其局部受池从而发现故障所在,这称为局部受热法。

以上这些方法只是分析仪器调试或维修中的一些常用方法,实际应用时彼此间并不是孤立的,有时需要几种方法交错使用,对测试结果进行综合分析,才能做出正确的判断。[3]

分析仪器发展趋势

如何把仪器用好?发挥其最大的作用。分析仪器的应用技术的发展已成为极为重要的问题。通过分析仪器的应用获得产业技术的提升、效率的提高、质量的保证、成本的降低。因此可以说,用户不只是消费者,更重要的他们是获利者。为此,加速应用技术的开发、推广,最大限度地实现分析仪器的实际使用效果,是分析仪器制造企业要完成的重要课题。

由于网络和通讯功能的强大,通过远程维护功能也使得这种服务的提供变得简单易行。同时,随着下游行业对分析仪器及系统、工业过程分析系统的精度、性能、稳定性的要求越来越高,因此,利用先进技术及工艺,选择适当的分析仪、应用软件、电路、气路,促进分析仪器系统向低功耗、多功能、集成化和系统化发展将是行业发展趋势。

随着网络和通信的发展,分析仪器朝着网络化,智能化,智慧化方向发展。使分析仪器的服务成为未来发展的重要方向。未来分析仪器的厂家将不只提供的是产品本身,而是仪器的应用服务。而用户关心的只是他最想得到的准确的、稳定的测量分析数据,尤其在环境监测和过程分析中的应用技术。

在线分析基本分类

在线分析基本可分为以下4种:

间歇式在线分析。在工艺主流程中引出一个支线,通过自动取样系统,定时将部分样品送入测量系统,直接进行检测。所用仪器有过程气相色谱仪、过程液相色谱仪、流动注射分析仪等。

连续式在线分析。让样品经过取样专用支线连续通过测量系统连续进行检测。所用仪器大部分是光学式分析仪器,如傅里叶变换红外光谱仪、光电二极管阵列紫外可见分光光度计等。

直接在线分析。将化学传感器直接安装在主流程中实时进行检测。所用仪器有光导纤维化学传感器、传感器阵列、超微型光度计等。

非接触在线分析。探测器不与样品接触,而是靠敏感元件把被测介质的物理性质与化学性质转换为电信号进行检测。非接触在线分析是一种理想的分析形式,特别适用于远距离连续监测。用于非接触在线分析的仪器有红外发射光谱、X射线光谱分析、超声波分析等。[2]

在线分析在线分析设备

在线分析分析仪器组成

对于大型在线分析仪器来说,一般包括6个部分。组成框图如图所示。 组成框图

(1)自动取样装置:取样装置自动快速地把被分析试样取到仪表主机处。

(2)试样预处理系统:其任务是对气体和液体试样进行过滤、稳压、冷却、干燥、定容、稀释、分离等操作,对固体试样进行切割、研磨、粉碎、缩分、加工成形等操作。

(3)检测器:分析仪器的检测器是根据某种物理或化学等原理把被测的成分信息转换成电信息。

(4)信息处理系统:其任务是对检测器给出的微弱电信息进行放大、对数转换、模数转换、数学运算、线性补偿等信息处理工作。

(5)显示器:用模拟表头、各种数字显示器或屏幕显示器显示出被测成分量的数值。

(6)整机自动控制系统:自动控制各个部分自动而协调地工作,每次测量时自动调零、校准;有故障时显示报警或自动处理故障。[3]

在线分析分析仪器分类

在线分析仪器一般可按测量原理分为8类:

(1)电化学式:采用电位、电导、电流分析法的各种电化学分析仪器.如电导式、电解式、酸度计、离子浓度计、氧化锆氧分析器、电化学式有毒性气体检测器等。

(2)热学式:利用气体的热学性质进行气体成分分析的热导式气体分析仪、热磁式氧分析仪。

(3)磁学式:目前主要用于氧含量分析。它利用氧的高顺磁特性制成,如磁力机械式、磁压力式氧分析器等。

(4)光学、电子光学及离子光学式:采用吸收光谱法原理的红外线气体分析器、近红外光谱仪、紫外~可见分光光度计、激光气体分析仪等;采用发射光谱法的化学发光法、紫外荧光法分析仪器;利用透射和散射光度法原理的烟尘浓度计、烟尘不透明计等。

(5)射线式或辐射式:如X射线分析仪、丫射线分析仪、同位素分析仪、微波分析仪等。

(6)色谱仪与质谱仪:利用物质性质进行组分分离并检测的定性、定量分析方法,如气相色谱仪、液相色谱仪、四极杆质谱计、飞行时间质谱仪等。

(7)物性测量仪表:定量检测物质物理性质的一类仪器。按其检测对象来分类和命名,如水分计、黏度计、密度计、湿度计、尘量计、浊度计以及石油产品物性分析仪器等。

(8)其他,如半导体气敏传感器等。 [3]

在线分析分析仪器特点

在线分析仪器与实验室分析仪器相比较,它应具有3个特点:

第一,从生产工艺流程取样,样品状态复杂必须作预处理,才能送入分析仪器进行分析。因此,在线分析仪器必须具有自动取样和试样预处理系统。
  第二,分析数据处理自动进行,并显示或输出给调节器或计算机。从取样操作到数据处理全部自动进行,在线分析仪器必须是完全自动化的。

第三,在线分析仪器的精度可以低些,但是长时间运行,其稳定性必须好。[3]

在线分析主要优势

离线分析在时间上有滞后性,得到的是历史性分析数据,而在线分析得到的是实时的分析数据,能真实地反映生产过程的变化,通过反馈线路,可立即用于生产过程的控制和最优化。离线分析通常只是用于产品(包括中间产品)质量的检验,而在线分析可以进行全程质量控制,保证整个生产过程最优化。在线分析是今后生产过程控制分析的发展方向。[2]

仪器分析基本概述

仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法。

仪器分析的分析对象一般是半微量(0.01~0.1g)、微量(0.1~10mg)、超微量(<0.1mg)组分的分析,灵敏度高;而化学分析一般是半微量(0.01~0.1g)、常量(>0.1g)组分的分析,准确度高。

仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等。

仪器分析主要特点

1、灵敏度高:大多数仪器分析法适用于微量、痕量分析。例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10^-14g。

2、取样量少:化学分析法需用10-1~10-4g,仪器分析试样常在10-2~10-8g。

3、在低浓度下的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~10%。

4、快速:例如,发射光谱分析法在1min内可同时测定水中48个元素。

5、可进行无损分析:有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。有的方法还能进行表面或微区(直径为?级)分析,或试样可回收。

6、能进行多信息或特殊功能的分析:有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。放射性分析法还可作痕量杂质分析。

7、专一性强:例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指定离子的浓度等。

8、便于遥测、遥控、自动化:可作即时、在线分析控制生产过程、环境自动监测与控制。

9、操作较简便:省去了繁多化学操作过程。随自动化、程序化程度的提高操作将更趋于简化。

10、仪器设备较复杂,价格较昂贵。[1]

仪器分析重要意义

仪器分析自20世纪30年代后期问世以来,不断丰富分析化学的内涵并使分析化学发生了一系列根本性的变化。随着科技的发展和社会的进步,分析化学将面临更深刻、更广泛和更激烈的变革。现代分析仪器的更新换代和仪器分析新方法、新技术的不断创新与应用,是这些变革的重要内容。因此,仪器分析在高等院校分析化学课程中所处的地位日趋重要。许多地方高校为了使自己培养的人才能从容迎接和面对新世纪科学技术的挑战,已将仪器分析列为化学等专业学生必修的专业基础课。故编写适应地方高校有关专业使用的仪器分析教材是教材改革的重要内容之一。

仪器分析就是利用能直接或间接地表征物质的各种特性(如物理的、化学的、生理性质等)的实验现象,通过探头或传感器、放大器、分析转化器等转变成人可直接感受的已认识的关于物质成分、含量、分布或结构等信息的分析方法。也就是说,仪器分析是利用各种学科的基本原理,采用电学、光学、精密仪器制造、真空、计算机等先进技术探知物质化学特性的分析方法。因此仪器分析是体现学科交叉、科学与技术高度结合的一个综合性极强的科技分支。 仪器分析的发展极为迅速,应用前景极为广阔。

仪器分析发展历程

经过19世纪的发展,到20世纪20~30年代,分析化学已基本成熟,它不再是各种分析方法的简单堆砌,已经从经验上升到了理论认识阶段,建立了分析化学的基本理论,如分析化学中的滴定曲线、滴定误差、指示剂的作用原理、沉淀的生成和溶解等基本理论。

20世纪40年代以后,一方面由于生产和科学技术发展的需要,另一方面由于物理学革命使人们的认识进一步深化,分析化学也发生了革命性的变革,从传统的化学分析发展为仪器分析。

现代仪器分析涉及的范围很广,其中常用的有光学分析法、电化学分析法和色谱法。光学分析法是基于人们对物质光谱特性的认识而发展起来的一种分析测定方法。17世纪牛顿将白光分成了光谱以后,科学家对光谱进行了研究。19世纪前半期,人们已经把某一特征谱线和某种物质联系了起来,并提出了光谱定性分析的概念。在此基础上,德国化学家本生和物理学家基尔霍夫合作设计并制造了第一台用于光谱分析的光谱仪,实现了从光谱学原理到光谱分析的过渡,产生了一种新的分析方法即光谱分析法。19世纪后半期,人们又对光谱定量分析的可能性进行了探讨。1874年,洛克厄通过大量实验得出结论,认为光谱定量分析只能依据光谱线的强弱。到20世纪,用光电量度法测定了光谱线的强度,后来,光电倍增管被应用于光谱定量分析。与此同时,光谱分析中的另一种方法即利用物质的吸收光谱的吸收光度法,也得到了发展。

电化学分析法是利用物质的电化学性质发展起来的一种分析方法。

仪器分析电重量分析

首先兴起的是电重量分析法。美国化学家吉布斯把电化学反应应用于分析化学中,用电解法测定铜,后来这种方法被广泛应用于生产中。电重量分析法存在着耗时长、易氧化等缺点,化学家在研究中把物质的电化学性质与容量分析法结合起来,发展了一种新方法,这就是电容量分析法。电容量分析法中发展较早的是电位滴定法,其后,极谱分析法和库仑分析法也相继发展起来。

仪器分析色谱分析

色谱分析法是基于色谱现象而发展起来的一种分析方法。1906年,俄国植物学家茨维特认识到所谓色谱现象和分离方法有密切联系,而且对分离有重大意义。他用这种方法分离了植物色素,并系统地研究了上百种吸附剂,奠定了色谱分析法的基础。20世纪30年代,具有离子交换性能的合成树脂问世,解决了一系列疑难问题,提高了色谱分离技术。由于单纯的分离意义不大,20世纪50年代,人们开始将分离方法和各种检测系统联接起来,分离分析同时进行,于是人们设计和制造了大型色谱分析仪。除了上述的方法以外,现代仪器分析法还有磁共振法、射线分析法、电子能谱法、质谱法等等。

仪器分析分析原理

仪器分析是根据被测组分的某些物理的或物理化学的特性,如光学的、电学的性质,进行分析检测的方法,因此,它实际上已经超出了化学分析的范围和局限,成为生产和科学各个领域的工具。

分析化学中的分析是分离和测定的结合,分离和测定是构成分析方法的两个既相独立又相联系的基本环节。分离是使物质纯化的一种手段,而纯化的背后是物质的不纯,是物质具有混合性。我们知道,化学家所说的物质,指的是物质本身,是某种单质或化合物。这里所说的物质本身,意思是以纯粹的形式存在的物质,没有其他物质混合于其中的物质,也就是人们通常所说的纯物质。可是,无论是天然存在的还是人工制造的物质,都不是绝对纯的,绝对纯是达不到的,绝对纯只能在理论中或思想上存在。因此,在化学分析中,首先遇到的矛盾就是纯与不纯的矛盾。

仪器分析基本途径

分离是纯化物质的一种手段。分离一般有两条基本途径:一条是将所要分析的物质从混合物中提取出来,另一条则是将杂质提取出来。这两条途径是同一原理的两种不同的实现方式,它们互为正反,互为表里。在分析化学发展的历史中,产生了许多分离方法。在古代,在酿造业中应用了蒸馏、结晶等分离手段;在近代,产生了各种各样的分离方法,如沉淀分离、溶剂萃取分离、离子交换分离、电解分离等。分离是有限度的。有些混合物由于性质非常相似,分离非常困难,如果不分离,共存的组分又互相干扰。在化学分析中,常常从分离操作中演变出其他方法,如掩蔽方法。

在仪器分析的发展史上,试样和试剂有不同的发展形式和内容。在早期,需要分析的是自然物,如矿石和植物,这些就是试样,而与其发生作用,从而进行鉴别的主要是火。后来,被分析的是溶液,与之发生变化的也是溶液,这时,试样和试剂都是溶液。人们最早使用的试剂是一种叫五倍子的植物浸液,被用于测定矿泉水中的铁。随着实践和认识的发展,大量植物浸液应用于化学分析之中,形成了天然植物试剂系列。在应用天然试剂的过程中,人们也在研究如何制备化学试剂。世界上第一个人工制备的分析化学试剂是黄血盐溶液,由此开创了化学试剂的新领域,拓宽了分析化学的研究范围。

仪器分析现代仪器

现代仪器分析应用了现代分析化学的各项新理论、新方法、新技术,把光谱学、量子学、富里叶变换、微积分、模糊数学、生物学、电子学、电化学、激光、计算机及软件成功地运用到现代分析的仪器上,研发了原子光谱(原子吸收光谱、原子发射光谱、原子荧光光谱)、分子光谱(UV、IR、MS、NMR、Flu)、色谱(GC、LC)、分光光度法、激光光谱法、拉曼光谱、流动注射分析法、极谱法、离子选择性电板、火焰光度分析等现代分析仪器,计算机的应用则极大地提高了仪器分析能力,因此现代分析仪器灵敏度高,选择性好、检出限低、准确性好,在数据处理和显示分析结果,实现了分析仪器的自动化和样品的连续测定。

实验仪器重要性

实验仪器自制,是指在没有现成的商品化仪器可供购买,或虽买得到但买不起的情况下,寻找相关材料自行研制和制作符合教学要求的实验仪器。其意义主要在于:①过渡性地解决仪器资源不足,及原有旧仪器与新课程新教材匹配不良等问题,为全面有效地展开实验教学提供条件空间;②也为开发出工业化商品化仪器创造条件雏形;③培养学生的创新精神和实践能力。学生的教具(学具)自制活动,是物理实验教学活动的一种形式,是物理实验教学活动的重要组成部分。

实验仪器图册(2张)

可以培养的学生的动手能力和想象力

自制教具的制作过程是一个学生动脑的过程,从初步在脑海里构想,动手设计,再到中间过程的反复考量修改都需要自己的思考才能进行下一步地制作,到最后完成中间的经历其实就是一个发现问题,解决问题的过程,既锻炼了学生的动手能力同时也是学生养成积极思考的好习惯。这一过程不仅使所学知识得到了巩固和运用,更重要的是使学生的思维能力、动手能力、创造能力得到了培养。教具自制的这种功能,是任何现成仪器所不具备和不能代替的。

教具自制是素质教育的一个重要体现

素质教育就是要求学生全面发展,要激发学生的个体的优势以改变应试教育同一化的模式,是每个学生的个体优势突显出来。而且自制实验仪器的过程是一个学生猎奇的过程,只有兴趣才会激发学生的兴趣,使枯燥的知识变为生动有趣的劳动课的模式。而且在学具制作过程中会经历失败的苦恼和通过不懈的努力获得最终成功的喜悦。这对于促进学生非智力因素的发展和心理素质的增强,都起着十分重要的作用。同时,对于学生科技意识的培养,也是十分重要的。这种教育功能,也是任何现成仪器所不具备和不能替代的。

能有效培养学生的学习主动性

著名物理学家麦克斯韦说过“实验的教育价值与仪器的复杂性成反比,学生自制的仪器,虽然经常出毛病,但却会比用仔细调节好的仪器能学到更多的东西”。在中学实验室里教学仪器数量有限,使用一般都强调要按步骤操作,如果非正常损坏,则要赔偿,甚至罚款。因此,学生普遍存在害怕心理,使用时小心谨慎,不敢越雷池一步。学生处于被动实验状态,学习的积极性和主动性受到了压制。而自制教具取材容易,制作简单,损坏了可以再制作,这是商品仪器无法比拟的,它能有效地提高了学生学习的积极性、主动性。另外,学生通过自制的教具,能加深对教材内容的深入理解。

还可以解决在教育经费上问题

教育自制既能受到学生的欢迎,又能收到学校的欢迎因为自制的实验仪器可以在成本上,利用工业边角料和日常生活废旧品制作或改制成有用的教具,自然就会成为低成本教具或称为廉价教具。在教育经费不足的情况下,可以弥补教具经费之不足。

实验仪器仪器前景

实验室仪器行业主要企业近700家目,拥有实验室离心机、天平、热分析仪器、动力测试仪器、真空仪器与装置、电泳仪、铸造测试仪器、应变测量仪、环境试验设备、土工测试仪器、声学仪器、陶瓷检测仪器12个专业,主要企业年产值在2010年近60亿人民币,其中一部分产品已达到或接近世界先进水平,质量稳定,少部分高端仪器达到国际先进水平,具有自主知识产权,先后进入欧洲、美洲、非洲、东南亚市场,取得了可喜的成绩,年出口额达10亿人民币。但是我们必须看到长期以来来自国外的著名仪器公司凭借技术和品牌优势,占据国内很大一部分市场,年进口额约为32亿元人民币,发展我国实验室仪器任重道远。

国家“十二五”规划指出:培育和发展战略性新兴产业对推进产业结构升级、加快经济发展方式转变具有重要意义,必须把突破一批支撑战略性新兴产业发展的关键共性技术作为科技发展的优先任务。实验室仪器行业市场潜力:年需量约为320亿,具有很大的市场需求。已有项目列为国家重点扶持和发展项目。

实验仪器起源发展

实验仪器卡文迪许实验室

卡文迪许实验室是英国剑桥大学的物理实验室,实际上就是它的物理系。剑桥大学建于1209年,历史悠久,与牛津大学同为英国的最高学府。

剑桥大学的卡文迪许实验室建于187l~1874年间,是当时剑桥大学的一位校长威廉化学实验仪器

·卡文迪许私人捐款兴建的。他是十八~十九世纪对物理学和化学做出过巨大贡献的科学家亨利·卡文迪许的近亲。这个实验室就取名卡文迪许实验室,当时用了捐款8450英镑,除去盖成一栋实验楼馆,还买了一些仪器设备。

英国是十九世纪最发达的资本主义国家之一。把物理实验室从科学家私人住宅中扩展出来,成为一个研究单位,这种做法顺应了十九世纪后半叶工业技术对科学发展的要求,为科学研究的开展起了很好的促进作用。随着科学技术的发展,科学研究工作的规模越来越大,社会化和专业化是必然的趋势。卡文迪许实验室后来几十年的历史,证明剑桥大学这位校长是有远见的。

负责创建卡文迪许实验室的是著名物理学家、电磁场理论的奠基人麦克斯韦。他还担任了第一届卡文迪许实验物理学教授,实际上就是实验室主任或物理系主任,直至1879年因病去世(年仅四十八岁)。在他的主持下,卡文迪许实验室开展了教学和多项科学研究,按照麦克斯韦的主张,在系统地讲授物理学的同时,还辅以表演实验。表演实验则要求结构简单,学生易于掌握。他说:“这些实验的教育价值,往往与仪器的复杂性成反比,学生用自制仪器,虽然经常出毛病,但他却会比用仔细调整好的仪器,学到更多的东西。仔细调整好的仪器学生易于依赖,而不敢拆成零件。”从那个时候起,使用自制仪器就形成了卡文迪许实验室的传统。

实验仪器麦克斯韦

实验室附有工厂,可以制作很精密的仪器,麦克斯韦很重视科学方法的训练,特别是科学史的研究。例如:他用了几年的时间整理一百年前H.卡文迪许有关电学实验的论著,并带领大家重复和改进卡文迪许做过的一些实验。有人不理解他的想法,但是后来证明麦克斯韦是有远见的。同时,卡文迪许实验室还进行了多项研究,例如:地磁、电磁波速度、电气常数的精密测量、欧姆定律实验、光谱实验、双轴晶体等等,这些工作起了为后人开辟道路的作用。物理实验仪器

麦克斯韦的继任者是斯特技特即瑞利第三。他在声学和电学方面很有造诣。在他主持下,卡文迪许实验室系统地开设了学生实验。1884年,瑞利因被选为皇家学院教授而辞职,由二十八岁的J.J.汤姆逊继任。

实验仪器汤姆逊

J.J.汤姆逊对卡文迪许实验室有卓越贡献,在他的建议下,从1895年开始,卡文迪许实验室实行吸收外校(包括国外)毕业生当研究生的制度,一批批的优秀青年陆续来到这里,在J.J.扬姆逊的指导下进行学习与研究。在他任职的三十五年间,卡文迪许实验室的工作人员开展了如下工作:进行了气体导电的研究,从而导致了电子的发现;进行了正射线的研究,发明了质谱仪,从而导致了同位素的研究;对基本电荷进行测量,不断改进方法,为以后的油淌实验奠定了基础;膨胀云室的发明,为基本粒子的研究提供了有力武器;电磁波和热电子的研究导致了真空二极管和三极管的发明,促进了无线电电子学的发展和应用。其他如X射线,放射性以及α、β射线的研究都处于世界领先地位。

卡文迪许实验室在J.J.汤姆逊的领导下,建立了一整套研究生培养制度和良好的学风。他培养的研究生当中,著名的有卢瑟福、朗之万、汤森德、麦克勒伦、W.L.布拉格、C.T.R.威尔逊、H.A.威尔逊、里查森、巴克拉等等,这些人都有重大建树,其中有多人得诺贝尔奖,有的后来调到其他大学主持物理系工作,成为科学研究的中坚力量。

实验仪器卢瑟福

1919年,J.J.汤姆逊让位于他的学生卢瑟福。卢瑟福是一位成绩卓著的实验物理学家,是原子核物理学的开创者。卢瑟福更重视对青年人的培养。在他的带领下,查德威克发现了中子,考克拉夫特和瓦尔顿发明静电加速器,布拉凯特观察到核反应,奥利法特发现氰,卡皮查在高电压技术和低温研究取得硕果,另外还有电离层的研究,空气动力学和磁学的研究等等。

1937年,卢瑟福去世后,由W.L.布拉格继任第五届教授,以后是莫特和皮帕德。七十年代以后,古老的卡文迪许实验室大大地扩建了,研究的领域包括天体物理学,粒子物理学,固体物理以及生物物理等等。卡文迪许实验室至今仍不失为世界著名实验室之一。

应该指出,卡文迪许实验室之所以能在近代物理学的发展中做出这么多的贡献,有它特定的时代背景和社会条件,但是它创造的经验还是很值得人们吸取和借鉴的。

实验仪器玻璃仪器

实验仪器化学仪器

主词条:化学仪器

胶头滴管,集气瓶,烧杯,试管,量筒,酒精灯,铁架台,药匙,试剂瓶,烧瓶,长颈漏斗,漏斗,分液漏斗,玻璃棒,量杯等

化学仪器的使用及注意事项:能加热的仪器

(l)试管

用来盛放少量药品、常温或加热情况下进行少量试剂反应的容器,可用于制取或收集少量气体。

使用注意事项:①可直接加热,用试管夹夹在距试管口 1/3处。

②放在试管内的液体,不加热时不超过试管容积的l/2,加热时不超过l/3。

③加热后不能骤冷,防止炸裂。

④加热时试管口不应对着任何人;给固体加热时,试管要横放,管口略向下倾斜。

(2)烧杯

用作配制溶液和较大量试剂的反应容器,在常温或加热时使用。

使用注意事项:①加热时应放置在石棉网上,使受热均匀。

②溶解物质用玻璃棒搅拌时,不能触及杯壁或杯底。

(3)烧瓶

用于试剂量较大而又有液体物质参加反应的容器,可分为圆底烧瓶、平底烧瓶和蒸馏烧瓶。它们都可用于装配气体发生装置。蒸馏烧瓶用于蒸馏以分离互溶的沸点不同的物质。

使用注意事项:①圆底烧瓶和蒸馏烧瓶可用于加热,加热时要垫石棉网,也可用于其他热浴(如水浴加热等)。

②液体加入量不要超过烧瓶容积的1/2。

(4)蒸发皿

用于蒸发液体或浓缩溶液。 使用注意事项:①可直接加热,但不能骤冷。

②盛液量不应超过蒸发皿容积的2/3。

③取、放蒸发皿应使用坩埚钳。

(5)坩埚

主要用于固体物质的高温灼烧。

使用注意事项:①把坩埚放在三脚架上的泥三角上直接加热。

②取、放坩埚时应用坩埚钳。

(6)酒精灯

化学实验时常用的加热热源。

使用注意事项:①酒精灯的灯芯要平整。

②添加酒精时,不超过酒精灯容积的2/3;酒精不少于l/4。

③绝对禁止向燃着的酒精灯里添加酒精,以免失火。

④绝对禁止用酒精灯引燃另一只酒精灯。

⑤用完酒精灯,必须用灯帽盖灭,不可用嘴去吹。

⑥不要碰倒酒精灯,万一洒出的酒精在桌上燃烧起来,应立即用湿布扑盖。

实验仪器分离物质的仪器

(1)漏斗

分普通漏斗、长颈漏斗、分液漏斗。普通漏斗用于过滤或向小口容器转移液体。长颈漏斗用于气体发生装置中注入液体。分液漏斗用于分离密度不同且互不相溶的不同液体,也可用于向反应器中随时加液。也用于萃取分离。

(2)洗气瓶

中学一般用广口瓶、锥形瓶或大试管装配。洗气瓶内盛放的液体,用以洗涤气体,除

去其中的水分或其他气体杂质。使用时要注意气体的流向,一般为“长进短出”。

(3)干燥管

实验仪器实验仪器

电化学类

酸度计 电导率仪 溶氧仪 离子计 滴定仪 红外水分测定 在线分析仪 电极 多参数分析仪

天平衡器

精密天平 电子台秤 分析天平 微量天平 机械天平

扭力天平 架盘天平 静水天平 液体比重天平

培养箱

电热培养箱 生化培养箱 振荡培养箱 光照培养箱 霉菌培养箱

隔水培养箱 厌氧培养箱 恒湿培养箱 CO2培养箱

干燥箱

鼓风干燥箱 电热干燥箱 真空干燥箱 红外干燥箱 冷冻干燥机 烘干器

光谱仪器

分光光度计 紫外光度计 火焰光度计 原子吸收计 农药残测仪显微镜

视频显微镜 金相显微镜 荧光显微镜 生物显微镜

电炉

箱式电阻炉 万用电炉 封闭电炉 程序电炉 电热板 电热套药品仪器

基因扩增仪 药物溶出仪 智能崩解仪 片剂硬度计 紫外分析仪 澄明度检测 中药粉碎机

光学仪器

白度仪 浊度仪 光泽度计 糖度阿贝仪 数字熔点仪 自动旋光仪 光学应力仪 余氯比色计

生化分析

电泳仪 电泳槽 离心机 移液器 超级恒温槽 超声波清洗 电位滴定仪 微波消解仪器 分离层析仪

反应仪器

培养摇床 胶体磨机 振荡器 研磨机 高速分散机

磁力搅拌器 电动搅拌机 真空泵 旋转蒸发器 数显水浴锅

水分测定仪 剪切乳化机 水浴搅拌机 高速粉碎机

物性测定仪器

旋转粘度计 数字粘度计 涂4 粘度杯 反应力仪 数显熔点仪 硬度计试验箱

人工气候箱 盐雾试验箱 老化试验箱 高低温试验

除湿净化仪器

蒸馏水器 纯水器 除湿机 通风柜 超净工作台 高压灭菌器 生物安全柜

计量检测仪器

刮板细度计 红外测温仪 转子流量计 黑白格板 铁钴比色计

薄膜测厚仪 风速计 漆膜涂布器 接触转速计

石油检测

法残炭试验 馏程试验器 石油试验器 锈蚀试验器 凝点试验器 针入试验器 水份试验器 恩氏粘度计 石油粘度仪

粮食仪器

氮磷钙测定 纤维测定仪 脂肪测定仪 定氮测定仪 农药测试仪 安全检测仪器

医疗器材

消毒设备 骨科牙科 医用器皿 X光防护 理疗康复 妇科肛泌 手术急救 检验设备 五官科设备 化工原料

表面活性剂 胺卤素原料 电镀原材料 食品添加剂 香精香料类 水处理原料

环保仪器

热分析仪器 粘度计 一氧化碳测定 其他环保仪器 cod 监测仪 甲醛分析仪 超声波检测仪 污水处理 恒温振荡

恒温恒湿箱 气浴振荡器

色谱仪器

液相色谱仪 气相色谱仪 示波极谱仪

实验仪器磁力搅拌器作用

磁力搅拌器适用于加热或加热搅拌同时进行适用于粘稠度不是很大的液体,或者固液混合物利用了磁场和漩涡的原理,将液体放入容器中后,将搅拌子同时放入液体;当底座产生磁场后带动搅拌子成圆周循环运动,从而达到搅拌液体的目的。磁力搅拌器的工作原理:利用磁性物质同性相斥的特性,通过不断变换基座的两端的极性来推动磁性搅拌子转动。
  磁力搅拌器的主要作用:一般的磁力搅拌器具有搅拌和加热两个作用。第一个作用,使反应物混合均匀,使温度均匀; 第二是在一个密闭的容器中加热,需要防止暴沸,例如在蒸馏过程中,可以加入沸石,也可以用磁力搅拌器;第三个作用就是,加快反应速度,或者蒸发速度,缩短时间。磁力搅拌器根据有无加热,可分为加热磁力搅拌器和磁力搅拌器。加热磁力搅拌器根据加热的个数,可分为单点加热磁力搅拌器和多点磁力搅拌器。

实验仪器注意事项

A:不能加热:量筒、集气瓶、漏斗、温度计、滴瓶、表面皿、广口瓶、细口瓶等

B:能直接加热:试管、蒸发皿、坩埚、燃烧匙

C:间接加热:烧杯、烧瓶、锥形瓶

试管

常用做①少量试剂的反应容器②也可用做收集少量气体的容器③或用于装置成小型气体的发生器

烧杯

主要用于①溶解固体物质、配制溶液,以及溶液的稀释、浓缩②也可用做较大量的物质间的反应

烧瓶

----有圆底烧瓶,平底烧瓶

①常用做较大量的液体间的反应②也可用做装置气体发生器

锥形瓶

常用于①加热液体,②也可用于装置气体发生器和洗瓶器③也可用于滴定中的受滴容器。

蒸发皿

通常用于溶液的浓缩或蒸干。

胶头滴管

用于移取和滴加少量液体。

注意: ①使用时胶头在上,管口在下(防止液体试剂进入胶头而使胶头受腐蚀或将胶头里的杂质带进试液 ②滴管管口不能伸入受滴容器(防止滴管沾上其他试剂) ③用过后应立即洗涤干净并插在洁净的试管内,未经洗涤的滴管严禁吸取别的试剂 ④滴瓶上的滴管必须与滴瓶配套使用

量筒

用于量取一定量体积液体的仪器。

不能①在量筒内稀释或配制溶液,决不能对量筒加热 。

也不能②在量筒里进行化学反应

注意: 在量液体时,要根据所量的体积来选择大小恰当的量筒(否则会造成较大的误差),读数时应将量筒垂直平稳放在桌面上,并使量筒的刻度与量筒内的液体凹液面的最低点保持在同一水平面。

托盘天平

是一种称量仪器,一般精确到0.1克。注意:称量物放在左盘,砝码按由大到小的顺序放在右盘,取用砝码要用镊子,不能直接用手,天平不能称量热的物体, 被称物体不能直接放在托盘上,要在两边先放上等质量的纸, 易潮解的药品或有腐蚀性的药品(如氢氧化钠固体)必须放在玻璃器皿中称量。

集气瓶

①用于收集或贮存少量的气体 ②也可用于进行某些物质和气体的反应。

(瓶口是磨毛的)

广口瓶

(内壁是磨毛的) 常用于盛放固体试剂,也可用做洗气瓶

细口瓶

用于盛放液体试剂 ,棕色的细口瓶用于盛装需要避光保存的物质,存放碱溶液时试剂瓶应用橡皮塞,不能用玻璃塞。

漏斗

用于向细口容器内注入液体或用于过滤装置。

长颈漏斗

用于向反应容器内注入液体,若用来制取气体,则长颈漏斗的下端管口要插入液面以下,形成“液封”,(防止气体从长颈斗中逸出)

分液漏斗

主要用于分离两种互不相溶且密度不同的液体,也可用于向反应容器中滴加液体,可控制液体的用量

试管夹

用于夹持试管,给试管加热,使用时从试管的底部往上套,夹在试管的中上部。

铁架台

用于固定和支持多种仪器, 常用于加热、过滤等操作。

酒精灯

①使用前先检查灯心,绝对禁止向燃着的酒精灯里添加酒精

②也不可用燃着的酒精灯去点燃另一酒精灯(以免失火)

③酒精灯的外焰最高, 应在外焰部分加热 先预热后集中加热。

④要防止灯芯与热的玻璃器皿接触(以防玻璃器皿受损)

⑤实验结束时,应用灯帽盖灭(以免灯内酒精挥发而使灯心留有过多的水分,不仅浪费酒精而且不易点燃),决不能用嘴吹灭(否则可能引起灯内酒精燃烧,发生危险)

⑥万一酒精在桌上燃烧,应立即用湿抹布扑盖。

玻璃棒

用做搅拌(加速溶解)转移如PH的测定等。

燃烧匙

燃烧匙是可以直接放在酒精灯上进行操作的仪器之一。

温度计

刚用过的高温温度计不可立即用冷水冲洗。

药匙

用于取用粉末或小粒状的固体药品,每次用前要将药匙用干净的滤纸揩净。

托盘天平

用于精密度要求不高的称量,能称准到0.1g。所附砝码是天平上称量时衡定物质质量的标准。

使用注意事项:①称量前天平要放平稳,游码放在刻度尺的零处,调节天平左、右的平衡螺母,使天平平衡。

②称量时把称量物放在左盘,砝码放在右盘。砝码要用镊子夹取,先加质量大的砝码,再加质量小的砝码。

③称量干燥的固体药品应放在纸上称量。

④易潮解、有腐蚀性的药品(如氢氧化钠),必须放在玻璃器皿里称量。

⑤称量完毕后,应把砝码放回砝码盒中,把游码移回零处。

容量瓶

用于准确配制一定体积和一定浓度的溶液。使用前检查它是否漏水。用玻璃棒引流的方法将溶液转入容量瓶。

使用注意事项:①只能配制容量瓶上规定容积的溶液。

②容量瓶的容积是在20℃时标定的,转移到瓶中的溶液的温度应在20℃左右。

滴定管

用于准确量取一定体积液体的仪器。带玻璃活塞的滴定管为酸式滴定管,带有内装玻璃球的橡皮管的滴定管为碱式滴定管。

使用注意事项:①酸式、碱式滴定管不能混用。

②25mL、50mL滴定管的估计读数为±0.01mL。

③装液前要用洗液、水依次冲洗干净,并要用待装的溶液润洗滴定管。

④调整液面时,应使滴管的尖嘴部分充满溶液,使液面保持在“0’或

“0”以下的某一定刻度。读数时视线与管内液面的最凹点保持水平。

量筒

用来量度液体体积,精确度不高。

使用注意事项:①不能加热和量取热的液体,不能作反应容器,不能在量筒里稀释溶液。

②量液时,量筒必须放平,视线要跟量筒内液体的凹液面的最低处保持水平,再读出液体体积。

量杯,一种量取液体的器皿。

量气装置

可用广口瓶与量筒组装而成。排到量筒中水的体积,即是该温度、压强下所产生的气体的体积。适用于测量难溶于水的气体体积。

其他

蒸发皿分无柄蒸发皿和有柄蒸发皿两种,规格以直径表示,有60~150mm等多种。

主要用途:蒸发液体、浓缩溶液或干燥固体物质。

使用注意事项:能耐高温,但不能骤冷,液体量多时可直接在火焰上加热蒸发。液体量少或粘稠时,要隔着石棉网加热。

蒸发皿主要用于蒸馏等操作,是理想的化学蒸馏仪器

表面皿

表面皿是玻璃制的,圆形状,中间稍凹,与蒸发皿相似。可以用来做一些蒸发液体的工作的,它可以让液体的表面积加大,从而加快蒸发.但是不能像蒸发皿那样加热。可以作盖子,盖在蒸发皿或烧杯上,防止灰尘落入蒸发皿或烧杯;可以作容器,暂时呈放固体或液体试剂,方便取用;可以作承载器,用来承载pH试纸,使滴在试纸上的酸液或碱液不腐蚀实验台

实验仪器基本操作

(1) 药品的取用:“三不准”①不准用手接触药品 ②不准用口尝药品的味道 ③不准把鼻孔凑到容器口去闻气味

注意:已经取出或用剩后的药品不能再倒回原试剂瓶,应交回实验室,不能随意丢弃,不要带出实验室,要放回指定容器中

A:固体药品的取用

取用块状固体用镊子(具体操作:先把容器横放,把药品放入容器口,再把容器慢慢的竖立起来);取用粉末状或小颗粒状的药品时要用药匙或纸槽(具体操作:先将试管横放,把盛药品的药匙或纸槽小心地送入试管底部,再使试管直立)

B:液体药品的取用

取用很少量时可用胶头滴管,取用较多量时可直接从试剂瓶中倾倒(注意:把瓶塞倒放在桌上,标签向着手心,防止试剂污染或腐蚀标签,斜持试管,使瓶口紧挨着试管口)

(2)物质的加热 给液体加热可使用试管、烧瓶、烧杯、蒸发皿;

给固体加热可使用干燥的试管、蒸发皿、坩埚

A:给试管中的液体加热 试管一般与桌面成45°角,先预热后集中试管底部加热,加热时切不可对着任何人

B:给试管里的固体加热: 试管口应略向下(防止产生的水倒流到试管底,使试管破裂)先预热后集中药品加热

注意点: 被加热的仪器外壁不能有水,加热前擦干,以免容器炸裂;加热时玻璃仪器的底部不能触及酒精灯的灯心,以免容器破裂。烧的很热的容器不能立即用冷水冲洗,也不能立即放在桌面上,应放在石棉网上。

(3) 过滤 是分离不溶性固体与液体的一种方法(即一种溶,一种不溶,一定用过滤方法)如粗盐提纯、氯化钾和二氧化锰的分离。

操作要点:“一贴”、“二低”、“三靠”

“一贴” 指用水润湿后的滤纸应紧贴漏斗壁;

“二纸”指①滤纸边缘稍低于漏斗边缘②滤液液面稍低于滤纸边缘;

“三靠”指①烧杯紧靠玻璃棒 ②玻璃棒紧靠三层滤纸边 ③漏斗末端紧靠烧杯内壁

(4)仪器的装配 装配时, 一般按从低到高,从左到右的顺序进行。

(5)检查装置的气密性先将导管浸入水中,后用手掌紧物捂器壁(现象:管口有气泡冒出,当手离开后导管内形成一段水柱。

(6)玻璃仪器的洗涤 如仪器内附有不溶性的碱、碳酸盐、碱性氧化物等,可加稀盐酸洗涤,再用水冲洗。如仪器内附有油脂等可用热的纯碱溶液洗涤,也可用洗衣粉或去污粉刷洗。清洗干净的标准是:仪器内壁上的水即不聚成水滴,也不成股流下,而均匀地附着一层水膜时,就表明已洗涤干净了。

(7)常用的意外事故的处理方法

A:使用酒精灯时,不慎而引起酒精燃烧,应立即用湿抹布。

B:酸液不慎洒在桌上或皮肤上应用碳酸氢钠溶液冲洗。

C:碱溶液不慎洒在桌上应用醋酸冲洗,不慎洒在皮肤上应用硼酸溶液冲洗。

D:若浓硫酸不慎洒在皮肤上千万不能先用大量水冲洗。

3、气体的制取、收集

(1)常用气体的发生装置

A:固体之间反应且需要加热,用制O2装置(NH3、CH4);一定要用酒精灯。

(2)常用气体的收集方法

A:排水法 适用于难或不溶于水且与水不反应的气体,导管稍稍伸进瓶内,(CO、N2、NO只能用排水法)

B:向上排空气法适用于密度比空气大且不与空气发生反应的气体 (CO2、HCl只能用向上排空气法)

C:向下排空气法适用于密度比空气小且不与空气发生反应的气体

排气法:导管应伸入瓶底

4、气体的验满:

O2的验满:用带余烬的木条放在瓶口。

CO2的验满:用燃着的木条放在瓶口。证明CO2的方法是用澄清石灰水。

5、(1)试管夹应夹在的中上部,铁夹应夹在离试管口的1/4处。

(2)加热时试管内的液体不得超过试管容积的1/3,反应时试管内的液体不超过试管容积的1/2。

(3)使用烧瓶或锥形瓶时容积不得超过其容积的1/2,蒸发溶液时溶液的量不应超过蒸发皿容积的2/3;酒精灯内的酒精不得超过其容积的2/3,也不得少于其容积的1/4。

(4)在洗涤试管时试管内的水为试管的1/2(半试管水);在洗气瓶内的液体为瓶的1/2;如果没有说明用量时应取少量,液体取用1——2毫升,固体只要盖满试管的底部;加热试管内液体时,试管一般与桌面成45°角,加热试管内的固体时,试管口略向下倾斜。

实验仪器信息化

“实验仪器信息化”是海仪的服务理念,领导层充分认识提升营销服务能力的必要性。经过对多种提升方案的充分调研比较,思创ECRM以其灵活的多区域、多职能部门的矩阵式管理支持以及强大的顾问咨询实力赢得了海泰仪器的认可。本次海泰仪器将通过应用思创ECRM解决方案整合企业资源,优化业务流程,提升综合竞争力和盈利能力。 系统以市场部的信息化为目标建立的。一期工程主要针对市场部内外联系、合同管理、合同网上评审等亟待解决的问题,开发了销售员web查询平台、合同数据管理、合同网上评审、产品信息查询、发货管理、产品发票、客户信息等。

该系统使用以后,主要实现以下功能:实验仪器的销售员可以方便安全的登录公司内部服务器查询自己合同的进展情况;可以实时的收到公司的各种通知;合同管理系统代替手工台帐;商务、生产、设计之间的合同评审可以完全在网上完成,提高效率;发货电子化;财务发票的自动产生与打印。在一期稳定运行后,软件组将根据市场部的需求,继续建立二期、三期工程,完成销售员费用、市场分析调查、市场动态统计、客户管理、订单电子化、售后服务等功能,为企业管理和决策作出支持!

客户售前阶段基本没有划分,各个分院、所和实体子公司的领导非常关注销售信息(包括:应收款、回款),但这些信息的只能是不定期从财务部门获得,缺乏从业务层面上对销售过程进行有效的、实时的、全面的监控6、没有对整个的销售过程进行梳理;导致多数销售处于盲目状态,使当前销售机会的跟踪没有形成一套可行的机制。

CRM管理软件业务人员处于相对被动销售状态。

针对X实验仪器信息化科学研究总院的业务现状,充实目标客户的资源、销售的过程化控制、减轻销售人员的负担,提高工作效率等问题变的十分重要;通过建设思创ECRM系统,实现全国客户资源的集中管理,有效地实现销售平台统一;通过系统的机会管理,实现销售的过程管理,从而有效地跟踪当前的销售机会及对重点项目进行有效的管理与监控。

应用效果实现如下:

1、 集中管理各地实验仪器客户资源,统一客户信息的平台。

2、 提高工作效率,并对现有资源进行整合、共享。

3、 使业务人员的行为更加有效,了解业务员的行动状态。

4、 梳理业务状态,实现实验仪器销售的过程化管理。

…………

干燥管内盛放的固体,用以洗涤气体,除去其中的水分或其他气体杂质,也可以使用U型管。

热分析仪器热分析法

差示扫描量法(DSC - Differential Scanning calorimeters),分为功率补偿式和热流式。功率补偿式DSC可以进行定量热量,能够从测量曲线峰面积中获得试样放热或吸热量。

热重分析法(TG-Thermogravimetric Analyzers) ,可以测试在加温过程中被测试的试样质量的变化,并可以通过质量变化曲线分析物质特性改变的温度点,和物性改变中的吸热或放热,以研究试样的的热特性。

差热分析法(DTA-Microcumputer Differential Thermal Analyzers),是应用最为广泛的一种热分析技术。将被测样品与参考样品同时放在相同的环境中同时升温,测试被测样品的温度变化,并将测试样品与参考样品的温度差记录下来,绘制成温度差曲线,以分析被测试样的热性能。

除了以上三种常用的热分析方法,还有热机械测量法、热膨胀测量法等方法。这些热分析方法已经广泛应用于金属、陶瓷、复合材料、涂层材料、耐火材料、高分子材料等的科研、生产领域。

热分析仪器气密性问题及检漏方法

热分析实验中仪器的气密性好坏是影响测试结果客观性和准确性的重要因素之一,但在实际测试中却往往被忽视。

热分析仪器热分析仪器气路流程

图1和图2分别是SDT Q600差热-热重同步测定仪(简称Q600 SDT)和Q50 热重分析仪(简称Q50TGA)的图1

气路流程模块示意图。为方便实验气氛的切换和调整,两类仪器均设置了A 和B2个进气口,一般情况下,A口连接高氮,B口连接空气。

对于Q600SDT,由气体切换器C选择其中一路气体进入质量流量计D,限定流量后从天平室后侧的底部吹入天平室E,扩散后再从天平室前侧中间出口吹向加热炉。

对于Q50TGA,从A口进入仪器的高氮被分成两路,一路经质量流量计D2限定流量后进入天平室E,扩散后再向下吹入加热炉F;另一路则和空气一起作为实验气氛,等待气体切换器C的选择,通过质量流量计D1定量后进入加热炉。图2

热分析仪器热分析仪器气密性分析

从Q600SDT气体流经的路线来分析,可能影响测试结果的空气(氧气)来源可以分为以下两类:

(1)仪器气密性不佳导致外部空气渗入。炉子与天平室接触的端面、天平室盖子安装面是实验和维修(更换或调整热电偶)时经常运动或必须涉及到的地方,也是比较容易发生漏气的地方。一旦存在漏气问题,漏气量将比较恒定,不会被氮气稀释除净,对测试结果的影响是长久且恒定的。而气体切换器、质量流量计等集合在仪器主机内部,不为使用者所接触,漏气的概率非常小。

(2)仪器内部残余空气的影响。当实验气氛由空气切换到氮气时,天平室内的空气不能立即排净,只会随着氮气的流入而逐渐稀释。另外,实验之初炉腔内也有一些残余的空气,它们对实验的影响是临时的且逐渐减弱的,到一定时候就会消除。与Q600SDT相比,Q50TGA 的气密性情况要好得多。因为在日常维修中不需要打开天平室,气路设计上又专门有保护气体(高纯氮气)固定吹扫天平室,不受实验气氛切换的影响,因而排除了天平室残留空气的可能性,也不存在天平室方面漏气的问题。需要关注的地方主要就是炉子与天平室接触的端口[1]。

水分分析仪器仪器简介

1、采用最新型控制电路,集成度高。仪器高度智能化、自动化,性能更加稳定可靠。

2 、采用大屏幕LCD液晶显示器,测定数据、状态指示,中文菜单操作提示清晰直观。

3 、采用原装进口电子天平,称量稳定、快速、可靠。

4 、用户可选配RS232串行接口及动态测控软件,与上位计算机联机,由计算机进行操作和数据处理。

5 、称重有误时,自动重新称量。仪器自动判定有无容器,自动判定有无样品。

6 、内置快速、恒重两种测定程序。微波、光波两种烘干方式。烘干时间、烘干方式、测定程序用户任意设定。微波烘干方式效率高,时间短。对于焦炭、易燃的、金属含量较高的、易灰化的等煤种适合于光波烘干方式。

7、具有掉电保护功能。内置日历时钟,设定参数,测定数据不因掉电而丢失。

8、自带打印机,测定数据自动打印,或重复打印。

9、每天自动生成非重复的样品编码。

水分分析仪器技术参数

1、工作电源:AC220V±10%,50HZ;

2、微波输入功率:≤1300W,微波输出功率:≤800W,

微波频率:2450MHZ;

3、光波功率:≤850W;

4、天平称量范围:全水≤310g, 分析水≤120g;

5、天平分辩率: 全水:0.001g, 分析水:0.0001g;

6、水分测定精度:全水≤0.4%, 符合GB/T211-1996;

分析水≤0.2%,符合GB/T15334-96;

7、一次分析试样数:≤9个;

8、仪器外形尺寸:510mm ×380mm × 540mm;

9、环境要求: 温度 0℃~40℃,相对湿度 ≤85%;

10、试样要求:全水粒度<6mm,质量8g~14g;

分析水粒度≤0.2mm,质量0.8g~1.2g。

水分分析仪器仪器特点

1、采用最新型控制电路,集成度高。仪器高度智能化、自动化,性能更加稳定可靠。

2 、采用大屏幕LCD液晶显示器,测定数据、状态指示,中文菜单操作提示清晰直观。

3 、采用原装进口电子天平,称量稳定、快速、可靠。

4 、用户可选配RS232串行接口及动态测控软件,与上位计算机联机,由计算机进行操作和数据处理。

5 、称重有误时,自动重新称量。仪器自动判定有无容器,自动判定有无样品。

6 、内置快速、恒重两种测定程序。微波、红外两种烘干方式。烘干时间、烘干方式、测定程序用户任意设定。微波烘干方式效率高,时间短。对于焦炭、易燃的、金属含量较高的、易灰化的等煤种适合于红外烘干方式。

7、具有掉电保护功能。内置日历时钟,设定参数,测定数据不因掉电而丢失。

8、自带打印机,测定数据自动打印,或重复打印。

9、每天自动生成非重复的样品编码。

在线分析仪器内容简介

本书是在面向21世纪教学与课程体系全面改革的进程中编写的新一轮教材。本书系统地介绍在线分析仪器检测理论及其在工业上的应用。全书共分9章,其核心是各种常用在线分析仪器检测原理和应用。对在线分析仪器的最新发展方向——网络化分析仪器也给予特别介绍。内容包括:电化学式、热学与磁学式、光学式和射线式在线分析仪器,色谱与质谱检测系统,在线物性分析仪器,计算机化、虚拟仪器化、现场总线式和网络化在线分析仪器等。自动取样和试样预处理系统是在线分析仪器区别于实验室分析仪器的主要特征,单独作为一章进行研究,通过具体例子的讲解以探寻一般规律。

本书可作为普通高等院校测控技术与仪器、电子信息工程、化学工程、环境工程、生产过程自动化、应用化学、工业分析等专业本科生教材和研究生参考用书,也可作为分析仪器行业工程师的参考书。

在线分析仪器是分析仪器与在线检测仪表的有效结合,是用来在线测量物质成分信息的仪表,广泛应用于石油、化工、冶金、食品、环境监测、医药等各个领域,对国民经济的发展和产品质量的提高起着非常重要的作用。本书是根据全国高等院校测控技术与仪器专业规范的要求,为本科测控技术与仪器专业和相关专业编写的。内容包括电化学式、热学与磁学式、光学式、射线式在线分析仪器、色谱与质谱检测系统,在线物性分析仪器、计算机化在线分析仪器、网络化在线分析仪器、现场总线式在线分析仪器、虚拟仪器化在线分析仪器等在线分析仪器的检测原理和应用,同时介绍在线分析仪器必备的自动取样和试样预处理装置,适用于测控技术与仪器、电子信息工程、化学工程、环境工程、生产过程自动化、应用化学、工业分析等专业的本科教学。

[1]

气体分析仪原理

主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。气体传感器

气体分析仪种类

气体分析仪热导式

一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来

推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。[1]

气体分析仪热磁式

热磁式氧分析仪

其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。

热磁式氧分析仪具有结构简单、便于制造和调整等优点。

气体分析仪电化学式

一种化学类的气体分析仪表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。[2]

气体分析仪红外线吸收式

根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判

别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪的检测部分由两个并列的结构相同的光学系统组成。

一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体分析仪。这种分析仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。

与红外线分析仪原理相似的还有紫外线分析仪、光电比色分析仪等,在工业上也用得较多。

非分散红外分析

非分散红外分析同时采用窄带滤光片和气体过滤相关法两种非色散光谱分析技术结合,适合于气体不同的测量范围要求。

过滤相关法能够测量低量程气体并有效避免交叉干扰,这种独特技术能消除弱吸收气体如CO和高吸收气体CO2交叉干扰。

热源发出的红外光被旋转过滤器过滤,导致系列脉冲信号直接通过包含样本气体的单元,当过滤器轮旋转时固态检测器反映出信号变化并将信号放大输出以及显示。[3]

多气体分析仪产品概述

仪器采用的传感器和配套电子技术为国际最先进的测量技术,五种测量参数中O2和H2S采用5年寿命的进口电化学传感器,HC、CO2、CO采用5年以上寿命的进口红外线传感器。同时,与之配接的数字处理技术均为国际成熟的电子与计算机技术,其可靠性不容质疑。可以及时、准确的测量出工业环境中或密闭容器中的易燃气体和有毒气体。该仪器配有坚固的防护外壳,可以被放置于任意位置进行连续监测。

多气体分析仪主要特点

内置采样泵;

仪器内部为锂电池供电,也可以外接电源,因此既作为便携式仪器也可作为连续监测仪器

作为连续监测仪器时,可与本公司生产的报警控制系统配套使用或直接接入其它数据采集系统;

工作性能稳定、可靠、使用寿命长、重量轻、体积小便于携带或安装;

大屏幕液晶显示测量值、电池电压、日期;

高容量数据存储;

RS485或4-20mA输出;

用户可根据需求,选用其它种类气体传感器或不同测量范围。

多气体分析仪配置

标准配置:主机、充电器、采样管、仪器外箱、使用说明书

可选配置:1、当仪器作为在线监测仪器时使用的前端气体过滤系统

2、安装支架

多气体分析仪其它性能指标

工作电压:DC10.8V

工作电流:0.5A

重 量: < 3kg

重 复 性: ±2%

精 度: ±5%F.S.

交叉干扰性: < 1%

显 示: 液晶显示

电池工作时间: 连续6小时

电池充电时间: 连续10小时

适应环境: 存储温度:-20—40℃

工作温度: 0—30(正常标定)

-------------20—0℃或30—4℃需特殊标定

工作湿度: 20%—95%相对湿度(无冷凝)

电池:可充电电池

通讯: RS485数据输出接口

多气体分析仪监测气体

监测参数

测量范围

分辩率

传感器预期工作寿命

响应时间

检测原理

一氧化碳(CO)

0-1%vol

0.01%vol

>5年

<10秒

红外线

0~30%

0.1%vol

>5年

<10秒


  
  

二氧化碳(CO2)

0~5%vol

0.01%vol

>5年

<10秒

红外线

0~50%vol

0.1%vol

>5年

<10秒


  
  

碳氢化合物(HC)

0~5%vol

0.05% vol

>5年

<10秒

红外线

氧气(O2)

0~25%vol

0.1%vol

5年

<30秒

电化学

0~100%vol

1%vol

5年

<30秒


  
  

硫化氢(H2S)

0~100ppm

0.1ppm

5年

<60秒

电化学

0~1000ppm

1ppm

5年

<60秒


  

气体分析仪器分类

气体分析仪器电化学式气体分析仪器

一种化学类的气体分析仪器表。它根据化学反应所引起的离子量的变化或电流变化来测量气体成分。为了提高选择性,防止测量电极表面沾污和保持电解液性能,一般采用隔膜结构。常用的电化学式分析仪有定电位电解式和伽伐尼电池式两种。定电位电解式分析仪的工作原理是在电极上施加特定电位,被测气体在电极表面就产生电解作用,只要测量加在电极上的电位,即可确定被测气体特有的电解电位,从而使仪表具有选择识别被测气体的能力。伽伐尼电池式分析仪是将透过隔膜而扩散到电解液中的被测气体电解,测量所形成的电解电流,就能确定被测气体的浓度。通过选择不同的电极材料和电解液来改变电极表面的内部电压从而实现对具有不同电解电位的气体的选择性。[1]

气体分析仪器红外线吸收式分析仪

根据不同组分气体对不同波长的红外线具有选择性吸收的特性而工作的分析仪表。测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线分析仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体分析仪器的检测部分由两个并列的结构相同的光学系统组成。[1]

气体检测仪简介

气体检测仪是一种气体泄漏浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。

早在上个世纪70年代,气体传感器就已经成为传感器领域的一个大系,属于化学传感器的一个分支。

四合一气体检测仪

气体检测仪分类

气体检测仪半导体式

它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。比如,酒精传感器,就是利用二氧化锡在高温下遇到酒精气体时,电阻会急剧减小的原理制备的。

优点

半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。下列几种半导体式气体传感器是成功的:甲烷(天然气、沼气)、酒精、一氧化碳(城市煤气)、硫化氢、氨气(包括胺类,肼类)。高质量的传感器可以满足工业检测的需要。

缺点

稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。

气体检测仪燃烧式

这种传感器是在白金电阻的表面制备耐高温的催化剂层,在一定的温度下,可燃性气体在其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度的函数。

优点

催化燃烧式气体传感器选择性地检测可燃性气体:凡是不能燃烧的,传感器都没有任何响应。催化燃烧式气体传感器计量准确,响应快速,寿命较长。传感器的输出与环境的爆炸危险直接相关,在安全检测领域是一类主导地位的传感器。

缺点

在可燃性气体范围内,无选择性。暗火工作,有引燃爆炸的危险。大部分元素有机蒸汽对传感器都有中毒作用。

气体检测仪热导池式

每一种气体,都有自己特定的热导率,当两个和多个气体的热导率差别较大时,可以利用热导元件,分辨其中一个组分的含量。这种传感器已经传感器地用于氢气的检测、二氧化碳的检测、高浓度甲烷的检测。

这种气体传感器可应用范围较窄,限制因素较多。

气体检测仪电化学式

它相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类:

(1)、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。

(2)、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是现有毒有害气体检测的主流传感器。

(3)、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。

(4)、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。

气体检测仪红外线

大部分的气体在中红外区都有特征吸收峰,检测特征吸收峰位置的吸收情况,就可以确定某气体的浓度。

这种传感器过去都是大型的分析仪器,但是近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。使用无需调制光源的红外探测器使得仪器完全没有机械运动部件,完全实现免维护化。红外线气体传感器可以有效地分辨气体的种类,准确测定气体浓度。

这种传感器成功的用于:二氧化碳、甲烷的检测。

气体检测仪磁性氧气

这是磁性氧气分析仪的核心,但是也已经实现了“传感器化”进程。

它是利用空气中的氧气可以被强磁场吸引的原理制备的。

这种传感器只能用于氧气的检测,大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的!

气体检测仪LEL

“LEL"是指爆炸下限。可燃气体在空气中遇明火种爆炸的最低浓度,称为爆炸下限—简称%LEL。英文:Lower Explosion Limited。

可燃气体在空气中遇明火种爆炸的最高浓度,称为爆炸上限—简称%UEL。英文:Upper Explosion Limited。

那么什么是爆炸下限? 可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。

燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。

可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。

另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。

有关部门和专家已经对现发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL)。

低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。

另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。

爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。

各种可燃气体检测仪的测量范围为0-100%LEL。 固定式可燃气体检测仪的通常设有二个报警点(与报警主机的型号有关):10%LEL为一级报警,25%LEL为二级报警。

便携式可燃气体检测仪的通常设有一个报警点:25%LEL为报警点。 举例说明,甲烷的爆炸下限为5%体积比,那也就是说,把这个5%体积比,一百等分,让5%体积比对应100%LEL,也就是说,当检测仪数值到达10%LEL报警点时,相当于此时甲烷的含量为0.5%体积比。

当检测仪数值到达25%LEL报警点时,相当于此时甲烷的含量为1.25%体积比。 所以,您不必担心报警后是不是随时有危险了,此时是在提示您,要马上采取相应的措施啦,比如开启排气扇或是切断一些阀门等,离真正有可能出现危险的爆炸下限还有很大一段差距,这样才会起到报警提示的作用。

气体检测仪ppm

ppm是溶液浓度(溶质质量分数)的一种表示方法,ppm表示百万分之一。

对于溶液:即1升水溶液中有1/1000毫升的溶质,则其浓度(溶质质量分数)为1ppm。

对于气体:对环境大气(空气)中污染物浓度的表示方法之一。

体积浓度表示法:一百万体积的空气中所含污染物的体积数,即ppm

大部分气体检测仪器测得的气体浓度都是体积浓度(ppm)。而按我国规定,特别是环保部门,则要求气体浓度以质量浓度的单位(如:mg/m3)表示,我们国家的标准规范也都是采用质量浓度单位(如:mg/m3)表示。

气体检测仪分类

按使用方式可分为台式气体检测仪和手持气体检测仪

按可检测的气体数量可分为单一气体检测仪和多种气体检测仪

按气体传感器的原理可分为红外线气体检测仪、热磁气体检测仪、电化学式气体检测仪、半导体式气体检测仪、紫外线气体检测仪等。

气体检测仪原理

以常见的红外线气体检测仪为例,说明气体检测仪的原理:

测量这种吸收光谱可判别出气体的种类;测量吸收强度可确定被测气体的浓度。红外线检测仪的使用范围宽,不仅可分析气体成分,也可分析溶液成分,且灵敏度较高,反应迅速,能在线连续指示,也可组成调节系统。工业上常用的红外线气体检测仪的检测部分由两个并列的结构相同的光学系统组成。
  一个是测量室,一个是参比室。两室通过切光板以一定周期同时或交替开闭光路。在测量室中导入被测气体后,具有被测气体特有波长的光被吸收,从而使透过测量室这一光路而进入红外线接收气室的光通量减少。气体浓度越高,进入到红外线接收气室的光通量就越少;而透过参比室的光通量是一定的,进入到红外线接收气室的光通量也一定。因此,被测气体浓度越高,透过测量室和参比室的光通量差值就越大。这个光通量差值是以一定周期振动的振幅投射到红外线接收气室的。接收气室用几微米厚的金属薄膜分隔为两半部,室内封有浓度较大的被测组分气体,在吸收波长范围内能将射入的红外线全部吸收,从而使脉动的光通量变为温度的周期变化,再可根据气态方程使温度的变化转换为压力的变化,然后用电容式传感器来检测,经过放大处理后指示出被测气体浓度。除用电容式传感器外,也可用直接检测红外线的量子式红外线传感器,并采用红外干涉滤光片进行波长选择和配以可调激光器作光源,形成一种崭新的全固体式红外气体检测仪。这种检测仪只用一个光源、一个测量室、一个红外线传感器就能完成气体浓度的测量。此外,若采用装有多个不同波长的滤光盘,则能同时分别测定多组分气体中的各种气体的浓度。

气体检测仪用途

气体检测仪可检测硫化氢,一氧化碳,氧气,二氧化硫,磷化氢,氨气,二氧化氮,氰化氢,氯气,二氧化氯,臭氧和可燃气体等多种气体,广泛应用在石化、煤炭、冶金、化工、市政燃气、环境监测等多种场所现场检测。 可以实现特殊场合测量需要;可对坑道、管道、罐体、密闭空间等进行气体浓度探测或泄漏探测。

气体检测仪保养

1、检查气体流量、通常为30/h,流量过大或者过小对分析仪结果影响较大

2、更换滤纸:停抽气泵,过滤罐排水

3、检查气路系统中有无漏气现象。抽泣泵膜片有无破损,取样探头密封圈是否破裂,四通阀、冷凝汽是否损坏等

4、取样探头清洗,取样孔管路疏通

5、检查冷凝器工作是否正常,通常温度调整在3摄氏度范围内

6、检查测量器室看是否脏污,及时清洗。

气体检测仪寿命

气体检测仪的使用寿命主要取决于,它的主要元件-----传感器。

我们也知道,不可能有一种传感器可以检测所有的气体,满足所有的要求,各种气体和各种环境使用的传感器也不一样,大致可以分为:用于检测有毒气体浓度的传感器和用于检测可燃气体的爆炸浓度的传感器。

用于测量有毒气体浓度的传感器大多是电化学传感器,它是基于电化学原理工作的传感器,影响其寿命的主要是电解液,一般的传感器在2~3年之后,电解液就消耗的不能再正常工作了,所以电化学传感器的使用寿命是2~3年。

用于检测可燃气体浓度的传感器大多是催化燃烧传感器,它的使用寿命在3~5年。

可燃气体分析仪简介

可燃气体分析仪

可燃气体分析仪:可燃气体分析仪是对单一或多种可燃气体浓度响应的探测器。可燃气体分析仪有催化型、红外光学型两种类型。

催化型可燃气体分析仪是利用难熔金属铂丝加热后的电阻变化来测定可燃气体浓度 。当可燃气体进入探测器时,在铂丝表面引起氧化反应(无焰燃烧),其产生的热量使铂丝的温度升高,而铂丝的电阻率便发生变化。

催化燃烧

红外光学型是利用红外传感器通过红外线光源的吸收原理来检测现场环境的碳氢类可燃气体!

烷烃类可燃气体分析仪

是结实耐用,操作简便的智能型可燃气体分析仪,被设计用以检测可燃性烷烃类气体浓度在爆炸下限0~100%的变化。这种探测器使用一种获得专利的“小型即插型可更换”红外线光学传感器。红外线传感器的特点是长时间的工作稳定性及最少的阶段性维护。红外线气体传感器在某些测量环境下是对于传统的催化燃烧式传感器的一种极佳的替代产品。

红外线可燃气体分析仪在以下应用环境下是理想的选择:

● 频繁的催化毒气曝露

● 频繁的高可燃性气体排放

● 缺氧环境

● 探测不易实现的环境

可燃气体分析仪典型应用

● 远洋作业平台及钻井平台 ● 炼油厂

● 石化厂 ● 压缩天然气及液化气处理

● 废水处理 ● 化工厂

● 泵站 ● 热电厂

特点

● 独特的小型即插型现场可更换传感器

● 无干扰、智能型探测器界面

● 输出:4-20mA, RS-485数据总线及3个报警继电器

● 极少的维护要求

● 加热的光学设计避免了冷凝现象

● 故障自诊断功能

● 长期使用成本低廉

● 五年的额定费用质量保证

● 低能耗

特点

● 独特的小型即插型现场可更换传感器

● 无干扰、智能型探测器界面

● 输出:4-20mA

● 极少的维护要求

● 加热的光学设计避免了冷凝现象

● 故障自诊断功能

● 长期使用成本低廉

● 五年的额定费用质量保证

● 低能耗

可燃气体分析仪是以甲烷作为标准气体进行实地校准和软件调试的。公司也可以其它气体进行样准,但客户必须在订货时事先声明。下表是公司现在可提供的校准气体:

甲烷 乙烷 丙烷 丁烷戊烷 己烷 庚烷 辛烷 乙烯 丙烯 丁烯 戊烯 己烯 辛烯 环丙烷 环己烷 环己烯 蒎烯 苯 甲苯 二甲苯 甲醇 乙醇 丙醇 异丁醇 二甲胺 三甲胺 吡啶二甲醚 乙醚 乙烯醚 环氧乙烷 四氢呋喃 二氧六环丙酮 丁酮戊酮 庚酮 甲基异丁基酮

红外线可燃气体分析仪技术特性

1、介绍

技术红外线可燃气体分析仪属于无干扰智能型产品,具有良好的安全性能,操作灵活简便。这种探测器的一个主要的特点是它的自动校准功能,可以通过带背光的液晶显示屏上的提示一步步地引导操作者进行校准。红外线气体探测器提供三种不同的输出方式:模拟信号4~20mA直流电;RS-485通讯接口及3个继电器(两个报警,一个故障自检)。可对警铃进行现场调试和编程。这些不同的输出方式为系统建立提供了最大的灵活性。则只提供4~20MA直流电的输出。控制电路以微处理芯片为基础,封装成一个即插型模块并被连在标准的连接模板上。传感器及信号发生器被安装在一个防爆机壳内,机壳上有玻璃罩。带有背光的数字显示屏既可显示传感器读数也可在编程时显示菜单功能。所有的红外线气体探测器都属于电器分类:Class I; Groups B, C, D; Division 1。这种产品系列延续了在气体传感器设计中体现的“易于安装、易于维护”的理念。

2、无干扰封装

探测器被封装在防爆金属外壳内。外壳上旋着一个带玻璃的盖子。位于变送器面板上的磁性编程按钮可通过手持的磁性编程工具对其进行操作,这就保证了传感器界面操作的无干扰性。所有的校准和现场调试都可在不开盖,保持现场原有状态的情况下进行。

3、简便的校准

带背光的液晶显示屏上显示校准提示,大大简化了校准步骤。技术人员只需用磁性编程工具就可简单地开始校准程序。校准程序一经启动,探测器就显示校准菜单,菜单提供了零位校准及起始校准两种选择。选ZERO就会开始自动归零功能。校准结束显示将恢复到校准菜单。选SPAN将开始自动起始状态校准,显示屏会要求提供该探测器整定的气体及其浓度。气体一经提供,探测器就开始自动起始校准。当信号稳定下来后,探测器会记录起始数据并提示操作人员断开气源。一旦气体浓度归零,探测器会自动继续它原来的正常工作。如果因任何原因探测器无法执行校准程序,探测器会显示出错提示。这一程序只需不到三分钟的时间而且几乎是不会出差错的。

4、信号输出

红外线气体传感器有两种信号输出:模拟的4~20mA输出和RS-485数据总线输出。而则只有一种4~20mA的输出。输出信号是与探测范围相关的4~20mA线性模拟信号。这种信号与Detcon公司的10系列及12系列多模块控制器,可编程逻辑控制器以及其它标准的数据获取设备兼容。模拟输出还有两个其它功能。第一,当进入校准菜单时,4~20mA信号会降至2mA。该低电流会保持到传感器回复到正常运作状态。第二,一旦出错,4~20mA信号会降至0mA,这一状况将保持到出错状态恢复正常。这些输出信号的变化可被外部设备用来识别及记录传感器的工作状态。

RS-485数据通讯中使用Modbus RTU协议,这一协议与几乎所有的可编程逻辑控制器、人机界面软件及其它控制系统兼容。因为Modbus RTU协议是一种标准。从RS-485通讯接口可获得以下信息:探测器读数、探测器警报点、校准模式、探测器错误、两个警报器状态及校准程序错误。RS-485的地址可由双列直插式封装开关改变。通讯是二线制、半双工,有一个探测器作为其伺服设备。从理论上说,主控制器在4000英尺远可同时控制256个不同的探测器。

5、警报特点

红外线气体探测器带有三个继电器,两个负责警报,一个负责故障自检。则不带继电器。这三个警报都可通过跳线调到以下的工作状态:触点状态(可以选择常开或常闭),还可调整继电器到连续通电或连续不带电。此外,警报器也可调成静音状态。报警点可通过菜单进行调节。自检警报器也可通过菜单调成静音状态,并对以下情况作出反应:零点漂移低于测量量程的-10%,微处理器出错,红外光源出错,信号参数出错或任何其它阻碍正常校准的状况。继电器触点整定电流为250伏交流电下5安培;30伏直流电下5安培。

6、编程状态

编程状态功能使用户能够用磁性编程工具在菜单上的“VIEW PROGRAMMING STATUS”(即看编程状态)设定传感器的警报点、RS~485识别号、检测气体及测量范围。一旦进入该程序,显示屏就会自动翻页以完成所有的调试步骤。结束后,传感器会回到正常工作状态。

7、超量程范围

当探测器测量的气体浓度超过测量范围的100%LEL时,显示屏会闪烁并显示最高的数值。当气体浓度恢复到测量范围内时,显示屏会回复到正常工作状态。

在线气体分析仪简介

在线气体分析仪器是一种用来进行气体成分分析检验的工具,借助它能得到某些成分种类和含量的数据。但是,气体分析仪器不是一种简单的工具,它既不像流量计、压力表那样结构简单,也不像各种热工仪表那样易于操作使用。它是一类结构复杂、使用技术难度较大的工具,使用气体分析仪器是一项较复杂且不易掌握的专门技术。

一般地说,在线气体分析仪器应用本身是一门独特的技术工作,而且是一种具有研究性质的工作。但是,这一点是不为行外人所认知和理解的。

在线气体分析仪工作原理

该仪器属于不分光式红外线气体分析器,其工作原理是基于某些气体对红外线的选择 性吸收。仪器采用单光源、单管隔半气室及先进的检测器,工艺精湛、分析精度高、稳定性好。采用先进的数字处理技术,全新的液晶显示画面。

红外线气体分析仪红外线气体分析仪原理

红外线气体分析仪,是利用红外线进行气体分析。它基于待分析组分的浓度不同,吸收的辐射能不同.剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号。这样,就可间接测量出待分析组分的浓度。

1.比尔定律

红外线气体分析仪是根据比尔定律制成的。假定被测气体为一个无限薄的平面.强度为k的红外线垂直穿透它,则能量衰减的量为:I=I0e-KCL(比尔定律)

式中:I--被介质吸收的辐射强度;

I0--红外线通过介质前的辐射强度;

K--待分析组分对辐射波段的吸收系数;

C--待分析组分的气体浓度;

L--气室长度(赦测气体层的厚度)

对于一台制造好了的红外线气体分析仪,其测量组分已定,即待分析组分对辐射波段的吸收系数k一定;红外光源已定,即红外线通过介质前的辐射强度I0一定;气室长度L一定。从比尔定律可以看出:通过测量辐射能量的衰减I,就可确定待分析组分的浓度C了。

红外线气体分析仪仪器介绍

红外线一氧化碳分析仪

CO:0.3%,1%,5%,20%,50%,100%

红外线气体分析仪技术参数

测量范围:

CO2:1000ppm,2000ppm,5000ppm,1%,5%,25%,100%

SO2:1000ppm ,2000ppm,8000ppm,5%,30%,100%

CH4:1%,4%,25%,50%,100%

CO:0.3%,1%,5%,20%,50%,100%

NO:1000ppm,2000ppm,0.5%,1%,5%,25%,100%

(可根据用户的要求定制,并可提供H2O,N2O,NH3,R134等气体分析仪)

◆ 精度:∠2%FS

◆ 稳定性:∠2%FS

◆ 工作温度:0-50℃

◆ 输出:模拟4-20mA或1-5VDC线性 数字RS232(标准)

红外线气体分析仪工作原理

该仪器属于不分光式红外线气体分析器,其工作原理是基于某些气体对红外线的选择性吸收。仪器采用单光源、单管隔半气室及先进的检测器,工艺精湛、分析精度高、稳定性好。采用先进的数字处理技术,全新的液晶显示画面。

红外线气体分析仪主要特点

标准19机箱,能安装在成套设备中 大屏幕LCD显示,全中文菜单操作,且有操作提示功能,操作简单、高效 手动/自动零/终点校准、 全数字化处理,更加准确稳定可靠 标准RS232数字通讯功能,可直接与电脑或DCS连接 输出为同步、隔离的(0/2/4-20)mA及(0/0.5/1-5)V信号可选,默认为(4-20)mA和(1-5)V,电流输出负载≤400Ω,电压输出负载≥250Ω

适用于化工、水泥、冶金、电厂等不同领域的气体分析;根据客户不同应用领域的要求,如测量范围、响应时间、供电特点等,实现对不同浓度、不同气体(SO2、NOX、CO2、CO、CH4、N2O等)的高精度连续检测和记录;可为用户集成系统应用方案,如化工过程控制、连续污染物检测系统(CEMS)等。

气体分析器基本概念

气体分析器,又称气体分析仪,是用于分析气体组成成分的仪表,属于流程分析仪表中的一种。其基本原理是利用气体传感器来检测环境中存在的气体种类[1]。

气体分析器典型的气体分析器

气体分析器激光气体分析仪

(1)DLAS(DiodeLaserAbsorptionSpectroscopy)半导体激光吸收光谱技术

DLAS技术本质上是一种光谱吸收技术,通过分析激光被气体的选择性吸收来获得气体的浓度。它与传统红外光谱吸收技术的不同之处在于,半导体激光光谱宽度远小于气体吸收谱线的展宽。因此,DLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式得出,关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。

(2)拉曼激光气体分析仪

拉曼激光气体分析仪RLGA的核心部分是一个激光检测装置,其中的氦氖激光器可以发射一种安全的低功率单波激光到一个气体测试腔内。由于激光能量微弱,装置内部通过检测腔两端的反射镜不断进行反射,将能量放大1000倍左右。光子与气体分子发生碰撞后发生散射,产生一种不同于激光频谱的光谱,而且不同分子散射出来的光谱是特定不相同的,这就是我们所称的“拉曼散射光谱”。检测腔内壁装有8个光学滤波器和光电传感器,用来吸收和检测不同分子的特定光谱频率,从而得到8种不同待测气体成分含量。根据这种原理,每种待测气体的含量都是通过直接测量得到的,不需要任何的导算;RLGA的检测精度更高;反应速度更快[2]。

气体分析器氧分析仪

按照原理分为:

(1)氧化钴,一般用于烟道排放或燃烧控制,取样探头可耐高温及耐腐蚀,安装方式为直接插入式或抽取式。

(2)顺磁式,该类型分析仪响应速度快,测量精度高,常用于精确过程控制。顺磁性氧分析仪利用氧分子具有顺磁性,被测气体引至内置磁场,氧分子在磁场内顺应磁场运动,在悬挂的哑铃球上产生推力,通过测量哑铃球的偏移而得出被测气体中的氧含量。

(3)电化学氧分析仪,用于微量氧含量测量。

气体分析器红外分析仪

红外分析仪根据Lambert-Beer定律,并采用NDIR(非色散红外)原理,可选择性在波长2-9um范围内测量多种组分,例如:一氧化碳,二氧化碳,二氧化硫,甲烷,一氧化氮以及一些简单碳氢化合物。

NDIR型红外分析仪按照光学系统划分,可分为双光路和单光路两种:

(1)双光路:从两个相同光源或一个精确分配的单光源,发出两路彼此平行的光束,分别通过分析气室后和参比气室后进入检测器。

(2)单光路:从光源发出单束红外光,利用切光装置将红外光调制成不同波长的光束,轮流通过分析气室进入检测器。

气体分析器气相色谱仪

气相色谱仪应含有原件:

(1)载气:将样品传输至色谱分离柱,之后至测量组件,载气特性为惰性气体,不应与样品和溶剂反应。一般可选用且常用的载气有氢气,氮气,氦气。氦气有最好的分离柱效果,氦气用于热导式测量组件,氢气用于当氦气不能使用的场合,另一为氦气和氢气的混合气可得到较快的响应。

(2)取样阀门,周期性地注入色谱柱分析所需要的测量样品。

(3)分离色谱柱,将样品分离为单个成分,分离色谱柱种类有成套分离柱和毛细管分离柱。

(4)检测器,用于测量每个成分的组件,检测器约有这些种类:

1)热导检测器(TCD)

2)氢火焰离子化检测器(FID)

3)火焰光度检测器(FPD)

4)电子捕获检测器

5)质谱检测器。

气体分析器质谱仪

质谱分析法是利用不同离子在电场或者磁场中运动轨迹的不同,把离子按质荷比分离而得到质量图谱,可以得到样品的定性定量结果。质谱仪按照常用的质量分离器不同可分为扫描磁扇式磁场质谱仪和四极质谱仪,飞行时间质谱仪等几种类型。目前工业应用上通常采用的是扫描磁扇式质谱仪。四极质谱仪的灵敏度高,适合实验室或科学研究。扫描磁扇式的稳定性和重复性较高,适合工业应用。

工业质谱仪主要由进样系统、离子源、质量分析器和离子检测器、真空系统、和与之配套的监测与控制系统和数据通讯系统七个部分组成[3]。

气体分析器气体分析器的应用

1、气体分析仪在化学反应生产中的应用

气体分析仪多应用于存在化学反应的生产过程,例如氨气合成流程中,在使用温度仪表和压力仪表控制反应环境以外,还需要使用气体分析仪表来分析进气的化学成分,控制氢气和氨气之间的合理比例,这样才能最大限度的提高氨气合成率,而获得较高的生产效率。

2、气体分析仪在锅炉燃烧中的应用

气体分析仪在锅炉燃烧控制中也起到了非常重要的作用。气体分析仪多应用于锅炉燃烧时的燃料供给控制,帮助操作人员调节燃料与助燃剂之间的比例成分。气体分析仪在锅炉燃烧中还起到了烟道化学成分分析的作用,据此操作人员可以恰当调整助燃空气的供给量。

3、气体分析仪在有毒有害气体监控上的应用

气体分析仪在工厂废气排放方面,特别是有毒有害气体排放上,也起到了非常重要的作用。气体分析仪的作用是对有毒有害气体进行连续的监控,防止有毒有害气体的浓度过高,威胁到工作人员的安全,或引起爆炸等恶性事故[1]。

激光气体分析仪原理

1.朗伯-比尔定律

因此,TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式中,IV,0和IV 分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸收谱线的强度;线性函数g(v-v0)表征该吸收谱线的形状。通常情况下气体的吸收较小,可用式(4-2)来近似表达气体的吸收。这些关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。

2.光谱线的线强

气体分子的吸收总是和分子内部从低能态到高能态的能级跃迁相联系的。线强S(T)反映了跃迁过程中受激吸收、受激辐射和自发辐射之间强度的净效果,是吸收光谱谱线最基本的属性,由能级间跃迁概率经及处于上下能级的分子数目决定。分子在不同能级之间的分布受温度的影响,因此光谱线的线强也与温度相关。如果知道参考线强S(T0),其他温度下的线强可以由下式求出式中,Q(T)为分子的配分函数;h为普朗克常数;c为光速;k为波尔兹曼常数;En为下能级能量。各种气体的吸收谱线的线强S(T0)可以查阅相关的光谱数据库。

激光气体分析仪测量技术

1.调制光谱检测技术

调制光谱检测技术是一种被最广泛应用的可以获得较高检测灵敏度的TDLAS技术。它通过快速调制激光频率使其扫过被测气体吸收谱线的定频率范围,然后采用相敏检测技术测量

被气体吸收后透射谱线中的谐波分量来分析气体的吸收情况。调制类方案有外调制和内调制两种,外调制方案通过在半导体激光器外使用电光调制器等来实现激光频率的调制,内调制方案则通过直接改变半导体激光器的注入工作电流来实现激光频率的调制。由于使用的方便性,内调制方案得到更为广泛的应用,下面简单描述其测量原理。

在激光频率扫描过气体吸收谱线的同时,以一较高频率正弦调制激光工作电流来调制激光频率,瞬时激光频率可表示为式中,(t)表示激光频率的低频扫描;a是正弦调制产生的频率变化幅度;w为正弦调制频率。透射光强可以被表达为下述Fourier级数的形式。

谐波分量可以使用相敏探测器(PSD)来检测。调制光谱技术通过高频调制来显著降低激光光器噪声(1/f噪声)对测量的影响,同时可以通过给PSD设置较大的时间常数来获得很窄带宽的带通滤波器,从而有效压缩噪声带宽。因此,调制光谱技术可以获得较好的检测灵敏度。

3.技术特点和优势(1)不受背景气体的影响

(2)不受粉尘与视窗污染的影响

(3)自动修正温度,压力对测量的影响

激光气体在线分析仪用来进行连续工业过程和气体排放测量,适合于恶劣工业环境应用,如钢铁各种燃炉、铝业和有色金属、化工、石化、水泥、发电和垃圾焚烧等。

特征

高分辨率(激光扫描频率是传统激光分析仪的几倍)

模块化设计,可现场模块化替换,快速维护和维修

高光穿透能力,适合于高粉尘阻挡环境应用

专利性航空动力学原理插入管,适合于特高粉尘阻挡环境应用

无交叉干扰

无需采样,现场在线直接测量

快速测量(响应时间可低于1秒)

结构紧凑、坚固耐用

根据应用要求不同,主要有以下几种组态型号:

原位型

激光原位测量,响应速度快,测量精度高

集成式正压防爆设计,安全可靠

模块化设计,可现场更换所有功能模块,维护方便

智能化程度高、操作方便

旁路型对穿式探头

激光旁路测量,测量精度高,抗干扰能力强

光学非接触测量,可直接测量高温、强腐蚀性气体

旁路处理装置简单、可靠,可直接安装在过程管道处

全系统防爆,支持气体温度、压力自动补偿

分布型

分布式激光测量,支持八个测量通道,高性价比

测量通道独立激光测量模块,可靠性高

网络化集中显示和控制,监控方便

测量气体成分和探测极限

管道式测量

远程式测量

采样式测量

管道式测量

远程式测量

采样式测量

激光气体分析仪行业应用

行业

应用领域

测量方式

监测气体

原铝行业

生产车间、周边环境

开路式、点式、扫描式

HF、CO

过滤除尘器进气口、出气口、烟道

原位(插入式、对穿式、旁路式)

HF、CO、CO2


  

石油天然气行业

二氧化碳收集与封存(CCS)工程

开路式、扫描式、车载式、机载式

CO2、CH4

三次采油(EOR)项目

CO2、CH4


  
  

天然气管道甲烷泄漏检测、泄漏点网络定位、泄漏浓度地图化

CH4


  
  

天然气开采生产过程

开路式、扫描式、

CH4


  

化工/石化行业

炼油厂HF烷化生产

原位(插入式、对穿式、旁路式)、开路式、扫描式、

HF

含硫石化生产

H2S


  
  

炼油厂周边

开路式、扫描式、

H2S、CH4、NH3、CO2、HF


  

催化、气体分离、烷基化、MTBE、重整

原位(插入式、对穿式、旁路式)、开路式

CO、CO2、HF、H2O


  

煤柴油加氢、蜡油加氢、重油加氢、制氢、聚丙烯

H2S、CO、CH4


  
  

硫磺回收、合成氨、尿素合成塔、氯碱

H2S、CO、CH4、NH3、HCL


  
  

乙烯氧氯化、环氧乙烷、PTA、乙烯

CO、CO2、CH4、NH3


  
  

其他化工生产中管道、车间、周边的监测

原位(插入式、对穿式、旁路式)、开路式、扫描式、点式

NH3、H2O、CH4、C2H2、CO、CO2、HF、HCL、HCN、H2S等


  

环保行业

识别甲烷热点、陆上甲烷流量

开路式、扫描式、车载式、机载式

CH4

农业甲烷、氨气释放量

CH4、NH3


  
  

区域温室气体浓度

CH4、CO2


  
  

垃圾填埋区或其他区域

CH4、H2S、NH3、CO2


  
  

大气质量在线监测

H2S、CH4、NH3、CO2


  
  

垃圾焚烧废气排放

原位(插入式、对穿式、旁路式)、开路式

H2S、HF、HCL、HCN、CO、 CO2


  

车辆尾气排放

开路式

CO、CO2


  

冶金行业

高炉炉气分析系统

原位(插入式、对穿式、旁路式)、

CO、CO2、CH4、H2O

转炉/电炉/精炼炉炉气分析系统

CO


  
  

转炉煤气回收分析系统

CO


  
  

焦炉煤气分析系统

CO、H2O


  
  

热风炉后烟道气分析系统

CO、CO2


  
  

烧结/石灰窑烟道气分析系统

H2S、CO、CO2、H2O


  
  

高炉喷煤分析系统

CO


  
  

电捕焦安全分析系统

CO


  
  

电除尘安全分析系统

H2S、CO、CO2


  
  

煤气回收系统

CO


  
  

电力行业

火电厂废气排放

原位(插入式、对穿式、旁路式)、开路式

CO、CO2、H2S、CH4等

DeNOx 过程中SCR、SNCR 竞争反应的优化控制

原位(插入式、对穿式、旁路式)

NH3、H2O


  

水泥行业

电除尘安全分析系统

原位(插入式、对穿式、旁路式)

CO

水泥制造过程管道、车间、周边的监测

原位(插入式、对穿式、旁路式)、开路式、扫描式、点式

CO、CO2、NH3、H2O、H2S、HF


  

其他行业

烟草加工生产过程管道、车间、周边的监测

原位(插入式、对穿式、旁路式)、开路式、扫描式、点式

CO、CO2、

核电、核加工生产过程管道、车间、周边的监测

HF


  
  

制陶业生产过程管道、车间、周边的监测

HF


  
  

电解镍、电解铜生产过程管道、车间、周边的监测

CO、HF


  
  

制药生产过程管道、车间、周边的监测

NH3、CO2


  
  

科考火山释放气体监测

开路式、扫描式

CO2、CH4、H2S


  

燃烧脱硫脱销工艺;如发动机实验室等

原位(插入式、对穿式、旁路式)

NH3、H2O、CO、CO2


  

仪器能够监测的其他工况

原位(插入式、对穿式、旁路式)、开路式、扫描式、点式、抽取等

CO、CO2、H2O、HCL、HF、H2S、HCN、NH3、CH4、C2H2、其他气体请联系我们;


废气分析仪应用

汽车废气分析仪主要用于对汽车排放污染物进行测量,广泛应用于汽车修理厂、汽车制造厂、汽车综合性能(安全性能)检测站和环境监测站等场所,不同类型的用户选择不同类型的产品。对于安全检测站、综合性能检测站,主要配套检测线专用的四气/五气废气分析仪;对于大型交通维修企业,首选四气/五气,其次选择二气废气分析仪;对于环保的路检、抽检和复检机动车排污检测机构或部门,首选四气/五气,其次是二气废气分析仪;对于主修或检测汽油车的企业,需要购买汽油车专用废气分析仪;对于主修或检测柴油车的企业,需要购买滤纸式烟度计或不透光度计;对于汽油车和柴油车混杂检测维修的企业,需要同时配备汽油车废气分析仪或烟度计等设备,也可考虑购买汽柴合一的废气分析仪。[2]

废气分析仪原理

测试原理

废气分析仪最常用的测试原理主要有:

不分光红外线分析原理(NDIR)、电化学原理,此外还有氢火焰离子化法(FID)、化学发光法(CLD),磁气压力法等。根据不同的原理,就相应有不同结构的检测器(通常称仪器的传感器),分别适合测试不同类别的气体成分。

不分光红外吸收法仪器结构简单、寿命长、测量精度高、反应速度快、运行费用低、操作简便,可用于分析测试CO(一氧化碳)、CO2(二氧化碳)、HC(碳氢化合物),NO(氮氧化物)等气体的浓度,因而被广泛用于汽车排放污染物浓度的分析。即特定气体分子(含原子)有特定的波长,可以吸收红外线,并且在恒定条件下其吸收量与气体的浓度成正比。因此,检测器输出电信号,经数据处理后由液晶屏显示部分(如液晶屏)显示出来或将信号输出供后续处理。

电化学法可用于测量O2、NO、SO2等,检测器是电化学式的,属消耗性的,寿命多为两年以内。此类检测器结构小巧简单、价格低廉、易于更换,但美中不足是寿命短。当有气体通过时会输出与气体浓度成良好线性的电压、电流信号,通过一定的电路处理输送给显示器。

氢火焰离子化法测量HC具有准确度高、输出与碳原子数成良好线关系的优点,多用于高精度测量试验。此类仪器可以连续长时间钡(试,反应快、测试精度高、结构简单、易维护,但配套价格昂贵。目前在国内主要用于汽车与发动机的研究开发、汽车与摩托车生产一致性认证与检查。

而化学发光法分析测试NO/NOx、等成分同样具有灵敏度高、反应速度快、性好等特点。其它类似氢火焰离子化法。

因此,用氢火焰离子化法分析HC,用不分光原理分析CO,CO2,用磁压法或氧化错法分析发动机排放的氧,用化学发光法分析NO/NOX,这些方法被各国权威机构广泛推荐为发动机排气分析的标准方法。但由于他们结构较复杂、配套费用较高(数百万至数千万人民币)、操作不够简便,目前只应用于发动机或汽车/摩托车整车排气分析。正如大家现在常提到的汽车欧Ⅰ、欧Ⅱ、欧Ⅲ、欧Ⅳ(最新)排放标准应用的仪器就是此类仪器,也是目前国家发改委要求汽车/摩托车厂家必备的形式认证及生产一致性检查测试设备,足见政府对控制未来汽车污染的决心。

仪器的检测器(俗称光学平台)是仪器的心脏部分,内部的光源辐射出来的红外光被调制成一定频率的光束,此光束通过采样(检测室)气室,然后再穿过滤光片进人检测器。样品检测器接收到这些光信号,便转换成电信号输出,系统进行数据处理,从而获得被测气体的相应浓度。

目前国内汽车/摩托车生产下线检测、汽车维修检测、在用汽车污染检测、汽车污染检测与治理等领域使用的仪器,主要应用不分光原理和电化学原理的小型仪器,费用较低,在国外也有使用氢火焰离子化法、化学发光法等大型仪器,但费用昂贵。现在国家在用机动车污染检测规范标准要求使用的仪器是前者,不过未来使用的要求会逐渐提高。

污染检测测试方法

国家在用机动车污染检测标准规定的测试方法主要有:

①怠速法,即机动车空挡静止在怠速下测试其排放尾气的各种成分,各成分的分析结果均是浓度;

②双怠速法,即机动车空挡静止经过高怠速、低怠速测试其排放尾气的各种成分,各成分的分析结果也是浓度;

③简易工况法,即机动车在测功机上按特定低速/高速工况规范模拟在道路上运行,测试其排放尾气的各种成分,各成分的分析结果是浓度或质量。

数据显示方式

通常小型汽车尾气仪的数据显示主要有三种方式:

①电压、电流表指针指示:国内、外最早的分析仪器通常采用的方式,靠指针指示,直观简便,多采用模拟技术,精度多为10%,在1993年前存在并流行,目前已是淘汰产品;

②LED数码管显示:比指针方式更进一步的显示方式,这种方式简单可靠、数字大而明亮、仪器功能增强,多是模拟或数字处理技术,精度多为10%,从1994年开始到现在均有生产,但此类仅为从模拟技术到数字技术的过渡;

③LCD液晶显示器:可显示汉字和较复杂的图形,控制系统复杂,功能强大,测试精度高,仪器档次高,菜单引导操作简便易行,采用现代计算机、单片机等数字处理技术,精度多为3一5%,是现在应用的主潮流。[2]

废气分析仪主要结构

目前国内使用最为广泛的废气分析仪是非扩散型红外线式废气分析仪(NDIR)。这种仪器主要由取样装置、分析装置浓度指示装置和校准装置等构成。取样装置由取样探头、滤清器、导管(由特殊材料制作,要求管壁不吸附气体、不与被测气体发生化学反应以确保测量精确度)、水分离器、和气泵组成,作用就是从汽车的排气管中吸入废气,滤掉灰尘和水分送往分析装置;分析装置由红外光源、测量气室、标准气室、切光扇轮和检测室组成,检测室由两个相互被带金属的隔膜隔开相同的密闭气室构成,气室内充有一定浓度的与被测气体相同的气体,气室的一端装有两个相同的由滤光镜构成的光窗,两个平行放置的管形气室(一根气室是标准气室,内部充满不吸收红外线的N2气体,另一根为标本气室,标本气体从中通过)的一端分别正对着分析室的两个光窗,另一端与红外线光源对正,标本气中不含被测气时,红外线穿过两根管型气室时均未被吸收,通过光窗分别进入检测室的两气室中能量相等,两个检测气室气体密度相同,中间隔膜也不会弯曲,隔膜上的金属片与临近金属片(构成一个平行板电容器)的间隙未变,因此平行板电容量未变;如果标本气体中有一定浓度的被测气体,致使部分能量被带走,两个检测气室内能量不等,一气室内密度大(由于部分能量被吸收,所获能量减小,温度相对降低,压力相对减小),另一气室内密度未变(维持以前压力),中间隔膜鼓向一边,平行板电容的容量变化,此变化量与标本气中被测气体浓度有关,电容的变化量就定义了被测气体的浓度,不同的被测气体对不同波长的红外线有不同的吸收特性,因此测量不同气体应使用不同波长的红外线;将不同的电容变化量换算为电流变化量用仪表表示,就构成了气体浓度指示装置。

废气分析仪主要用途

对普通的修理工而言,尾气分析仪往往仅作为车辆检侧并控制尾气、测试汽车排放污染物参数的普通设备,它的检测诊断发动机燃烧状况的诊断功能远没有被充分发挥。因此尾气分析仪设备的应用培训教育仍是提高维修技师应用仪器水平的重要内容。利用仪器进行科学诊断,继而做出准确判断,是维修的关键。

尾气分析仪的一般用途:

(1)对机动车的排放情况进行检测,监测其污染物的排放水平,判断排放污染物是否合格或超标;

(2)对化油器式车辆进行检测、调整并使之空燃比处于合理水平,提高燃烧效率,降低污染物排放;

(3)对电喷车、装有三元催化器的电喷车通过检测诊断,可以监测其电控系统、燃烧系统、催化转化系工作是否正常,达到发现问题相应找出解决问题的目的。

(4)检测汽车排放系统是否存在泄漏、破损。

(5)可检查包括燃烧情况、点火能量、进气效果、供油情况、机械情况等诸多发动机故障;

(6)其它涉及的诊断用途,如采用OBD接口技术,进行系统故障代码的诊断,判断其空燃比、氧传感器等是否正常等。[2]

废气分析仪应用配置特点

尾气分析仪用户群体特点及应用配置特点

根据不同的检测要求与规范,要选择合适的汽车尾气分析仪,即达到规范要求并满足使用的便利性是主要的选择依据。任何片面的选择都是不恰当的。

(1)汽车研发及制造检测、3S/4S服务站应首选五气仪,零级精度,价格在3一9万元之间;

(2)安全检测站、综合性能检测站:按国家公安部、交通部相关最新标准要求新建、改建检测线必须配套使用四气或五气分析仪,一级或零级精度,价格在2一7万元。

(3)一、二类维修企业应该首选四气仪或五气仪,价格在2.5一5.5万元之间,如北京、上海、天津、广州、深圳等环保要求严格的城市。经济落后地区或环保要求较松的地区大多选择二气分析仪,价格在12一2.5万元之间。

(4)环保的路检、抽检、复检等机动车排污检测:首选四气/五气仪,其次是二气仪。

(5)I/M检测站:推荐使用五气仪,零级精度,价格在3一20万元之间;

(6)简易工况法检测站:推荐使用五气仪,零级精度,价格在6一30万元之间。

此外,正确选购仪器的考虑因素(按先后顺序)是:①适用性;②性价比;③服务;④价格。[2]

废气分析仪主要类型

单组分、双光路、电容式废气分析仪

废气分析仪的两个光源发出能量相等的两束红外光IRD,ISD;切光片是一个周期性旋转的扇形挡光片,在旋转过程中将两束光周期性地遮断、打开;参比气室充有不吸收红外光的气体(例如N2);样品气体从样品气室的入口流入,从出口流出;电容式检测器由一片金属膜分隔成左右两个接收室;两接收室充有一定浓度和组分的被测气体,金属膜旁有一平板电极,与金属膜构成一平板式电容器。

当样气中被测气体浓度为0%时,样品气室内没有红外光能量被吸收,因此,光源光投射到样品气室后IS=ISD。

此类仪器的主要结构特征是:每一个检测机构只分析一种气体成分(称组分);双光路;采用电容式检测器。

这类型废气分析仪在切光片周期性地遮断、打开红外光的过程中,电容量也产生周期性的变化,其变化量正比于被测气体的浓度。将电容变化量通过相应电路检测出来,就可知被测气体的浓度。

这种类型废气分析仪的结构是一种经典型的结构,从60年代起开始在国外应用,国内80年代的汽车废气分析仪采用的就是此项技术(例如MEXA一324E型汽车废气分析仪)。这类废气分析仪的特点如下:技术比较成熟;结构复杂,加工精度要求高;一个检测机构只能测试一种组分;检测器密封性要求高。

多组分、单光路、半导体式废气分析仪

随着半导体材料技术的发展,半导体红外检测器(例如热电堆检测器、热释电检测器)在汽车废气分析仪上得到了广泛应用,其发展趋势将取代前述电容式检测器。这种多组分、单光路、半导体式废气分析仪结构的主要特征是:每一个检测机构可以分析2种或3种组分;单光路;采用半导体检测器。

从光源发出的红外光投射到样品气室,当样气中被测组分(CO,HC)浓度为0%时,没有红外光被吸收,通过滤光片之后到达半导体红外检测器上的红外光能量最强,半导体红外检测器输出信号最大;当样气中被测组分浓度不为0%时,CO和HC气体将分别吸收部分相应波长的红外光能量,使到达其相应半导体红外检测器上的红外光能量减少,输出信号减小通过比较半导体红外检测器输出洁号减小的程度,就可测算出相应的CO,HC气体浓度

光路中的滤光片是一种窄带通滤光片,它仅允许相应于CO(或HC)红外吸收波长的那部分红外光通过,其他波长截止因此,在其后的半导体红外检测器的输出信号只反映某一相应的气体(CO或HC)浓度,从而实现在一个光路中检测多种气体组分的功能

切光片按一定转速旋转,将光源发出的红外光周期性地遮断、打开,使半导体红外检测器输出交变信号,从而使整个机构工作更稳定.灵敏度更高。

此种结构是一种比较光进的结构,从80年代初期开始在国外投人使用,国内也有部分厂家在近年生产出采用上述结构的仪器(例如南华仪器有限公司设计制造的NHA一201型汽车废气分析仪),其特点如下:结构简单.在一个检测机构上可完成多种组分的检测;可靠性高;在放大及信号处理模块中采用单片计算机技术后,可方便地实现自动调零、线性化、压力补偿、温度补偿、数字显示和通讯等先进功能。[1]

尾气分析仪功能特点

采用不分光红外吸收原理(NDIR)测量汽车排放

废气中的CO、HC、CO2、采用电化学电池原理测量O2、NO浓度

★大屏幕液晶显示,中文菜单引导,操作简便。

★HORIBA进口世界最先进O级精度平台机芯、传感器组装

★零位自动调整,自动校准功能

★柔性取样探头适应多种尾气管形式、高效合金水份分离器

★独有开机30秒快速预热功能,快速适应各地温变化。 压力和温度自动补偿,消除了外界压力温度变化的影响。

★自动计算发动机空燃比、入值,自诊断功能

★具备500组数据储存、查阅功能、车牌号码输入功能

★内置打印机、油温检测、发动机转速检测功能(可选)

★配备标准的RS232接口和模拟0-1V电压输出,方便通讯联网。

★免费在线升级ISP接口。

★体积小、重量轻、方便携带

★符合国家标准、BAR97排放法规精度要求

★产品保修一年,全国范围质量联保。

烟气分析仪优势介绍

烟气分析仪功能强大

可分析检测O2,CO,CO2,NO,NO2, NOx ,SO2,CXHY ,烟尘,排烟温度,烟道压力,燃烧效率及过剩空气系数等。可选差压、流速。排放总量等可选添加传感器后可检测H2S,H2,HCL,NH3,HC等烟气组分。

烟气分析仪配备了大功率帕尔帖气体冷却器和排水蠕动气泵,以及电子检测冷凝水一旦达到排水上限,自动开启蠕动泵,排放冷凝水,非常适合潮湿的烟气监测分析。同时仪器配备三级过滤及颗粒物搜集装置,有效过滤烟尘颗粒。

烟气分析仪配备无线移动手操器,约50米覆盖范围内操作仪器,非常适合污染源严重的场合,操作人员远程控制操作仪器;避免操作人员现场污染。

内置大功率薄膜气泵,极限真空度可达-60kPa,烟道负压为-20kPa时仍能正常工作。

烟气采样流量2-3.5升/分钟,确保传感器接触充分的烟气,提高反应速度。T90为:O2----15秒;CO,NO,NO2, SO2-----20~60秒

气泵耐腐蚀性能优越。MTBF(平均无故障时间)2万小时。

烟气分析仪操作简便

使用OK功能键直接执行各项操作。开机到开始测量只需要连按两次“OK”键。

采用大屏幕液晶显示器,所有测量结果一目了然。专用功能键切换字符大小,便于查看测量结果。

交直流两用,一次充电可连续工作6小时,非常适合在工业现场工作。

具备自诊断功能,出现故障时(如传感器失效、插头接触不可靠、超量程等)自动报警,并指出发生故障的部位。便于维护。

CO浓度超量程时,自动断开气路,并用备用气泵冲洗传感器,延长其使用寿命。

仪器内置1500组数据存储和1GB MMC存储卡,自动存储测量数据,并生成EXCEL格式文件,仪器内置高速热敏打印机随时打印测量数据。

用户自定义存储时间、自动采样、测量、存储并打印测量数据和给定时间段的平均值。

(高温探头、弯探头、多孔探头)和长度(0.75米、1.0米、1.5米、2.0米)的探头,确保适应不同的现场测试环境。

通过德国T&Uuml;V认证和中国计量器具型式批准认证(PA 2009-C112)。

烟气分析仪功能用途

综合烟气分析仪一般适用于多种行业的锅炉气体污染排放分析,热工分析,燃烧过程研究等,可同时测量和计算7种气体和18个燃烧参数,特别提示O2传感器寿命、机器稳定度、电池容量等仪器关键运行参数。综合烟气分析仪形状小,重量轻,也可以重叠放置。可以在各领域发挥威力的便携式分析仪。作为可选用件,我们还为您准备了最适于燃烧器具、锅炉、垃圾焚烧等恶劣环境下的长时间连续检测的前处理装置,希望可以带给您最大程度的便利。

综合烟气分析仪可应用在:

1.天然气、液化气、煤气泄漏检测。

2.市政燃气管道泄漏。

3.气体快速分析或在线分析。

4.天然气管道泄漏监测。

5.污染源检测。

6.工业工艺现场分析。

7.科学研究实验室分析。

功能优势如下:

1.针对现场操作人员的设计。

2.在现场不必移动主机,通过轻便的小型手操器和数据线便可遥控主机完成所有功能。

3.满充电一次可连续工作8小时以上而无须外接电源。

烟气分析仪原理

[1]

烟气分析仪的工作原理常用两种,一种是电化学工作原理,另一种是红外工作原理。目前市场上的便携式烟气分析仪通常是这两种原理相结合。以下是这两种烟气分析仪的工作原理介绍:

电化学气体传感器工作原理:将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。

在一个塑料制成的筒状池体内安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体在电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。可测量SO2、NO、NO2、CO、H2S等气体,但这些气体传感器灵敏度却不相同,灵敏度从高到低的顺序是H2S、NO、NO2、SO2、CO,响应时间一般为几秒至几十秒,一般小于1min;它们的寿命,短的只有半年,长则2年、3年,而有的CO传感器长达几年。

红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性的原理而进行气体成分和含量分析。

红外线一般指波长从0.76μm至1000μm范围内的电磁辐射。在红外线气体分析仪器中实际使用的红外线波长大约在1~50μm

烟气分析仪方式

直接抽气采样法

稀释抽气采样法

在线直接测量法

烟气分析仪代表产品

烟气分析仪技术参数

多功能烟气分析仪

主要配置及要求:

-*多功能烟气分析仪可以测量: O2, CO, NO,NO2, NOx, SO2, 等烟气参数,还可以测量烟气温度和烟气压力、差压、流速等

-计算: CO2, 燃烧效率, 热损失, 过量空气系数, 烟气露点,参比氧换算

-LCD 图文显示 -*分析仪由无线手操作控制器控制操作仪器,覆盖距离可到50米远

-烟气温度搜寻烟气中心点,使测量数据具有代表性

-*帕尔帖气体冷却器和冷凝水排放蠕动泵

-电子检测冷凝水,一旦到达排放值,自动启动蠕动泵排放冷凝水

-气体预处理带有精细过滤器单元,有效过滤烟尘和颗粒物

-*内置高速热敏打印机,现场打印数据

-采样探管300mm双层管壁带有加热烟黑测量, 带操作手柄和3米标准采样管线

-直径10mm不锈钢采样探管,长度1000mm,耐温1000℃

-*耐NOx和NH3采样管线,特氟龙材质,长度3.5米,防止NOx和SO2对管路腐蚀

-*加热采样系统, 加热采样管线3.3m,加热过滤器头带有300mm探管1探管,

-*差压测量+/-100hPa ;及 流速测量计算,包括L型皮托管 直径8mm,长度1000mm,

-进口大功率采样气泵,带可视流量计显示

-CO气路SO2/NOx过滤器,保证CO的测量精度

-开机自校准不超过1分钟,测量完毕后,自动抽取清新空气清洗传感器

-具有CO超量程自动关断保护功能

-*DAS数据采集软件和无线数据采集器USB-HF,实时采集数据传输到PC

-*128MB MMC数据存储卡,用于仪器自动测量,存储记录值可达38万

-市电/蓄电池,交直流两用供电

-铝合金框架仪器箱

过滤芯及耗材:

-20支精细过滤器

-热敏打印纸20卷

烟气分析仪主要数据

参数

范围

单位

精度

分辨率

原理

O2

0-21

vol.%

+0.2%

0.1%

电化学传感器

CO ppm

0-10000

ppm

+10ppm或5%测量值

1ppm

电化学传感器

NO ppm

0-1000

ppm

+5ppm或5%测量值

1ppm

电化学传感器

NO2 ppm

0-5000

ppm

+5ppm或5%测量值

1ppm

电化学传感器

SO2 ppm

0-5000

ppm

+5ppm或5%测量值

1ppm

电化学传感器

T-Gas烟温

0-1000

+2℃或1%测量值

1℃

NiCrNi热电偶

T-Room

0-99

+1℃

1℃

PTC热电偶

压力

-/+100

hPa

+2%测量值

0.01hPa

DMS压力传感器

差压

-/+100

hPa

+2%测量值

0.01hPa

DMS压力传感器

烟黑

0-9

0.1

比色卡

烟气分析仪产品特性

可测定烟道气中各燃烧参数的手持式烟道气体分析仪,具有时尚的外观和先进的检测技术,且操作简单。

可测量空气和烟气温度、动压、静压、压差,监测 O 2 和 CO 、 NO ,可选配 CO 高浓度, SO 2 、 NO x 测量通道。此外还可以计算出 CO 2 ,燃烧效率,烟气损失和空气过剩系数。

可监测周围空气中的 CO 浓度,相当于集成了一台个人 CO 检测报警仪,保护使用者的人身安全。

配有一个有自动过载保护的清洗泵,有防震功能的气体预处理器。

内置红外传输器和数据储存器,可存储 40 个外整的测量值(也可选配高容量内存,能储存几千个完整测量值)。通过通讯接口可轻易的将测量值传输到计算机内。

烟气分析仪发展

烟气的测量环境一般都是十分苛刻。众所周知,很多含硫的烟气温度和含湿量十分高,含硫的烟气容易溶解于水蒸气,而造成测量数据的偏小。对此,烟气分析仪提出完善的解决方案。便携式烟气分析仪,成为节能环保业必备设备,特别针对环保和工业领域的需求而设计,适合于重污染源的各种烟气成份的准确监测。

为贯彻《中华人民共和国大气污染防治法》,改善环境和提高空气质量,保障人体健康,规范工业锅炉及炉窑烟气脱硫工程建设,国家制定了《工业锅炉及炉窑湿法烟气脱硫工程技术规范》等一系列法规成为国家环境保护标准,督促众多工业锅炉使用者在排放烟气时含硫量不得高于规定数值。

手持式检测仪,可检测 O 2 、 CO 、 NO 、 NO 2 、 SO 2 及高浓度 CO ,可选配红外传输打印机

烟气分析仪应用行业

烟气分析仪适用于各类工业气炉或烟囱;环境保护行业;发动机;锅炉监测;能源监测职能部门;冶金工业;热能电力工业;建材硅酸盐工业;石油化工节能监察

用于测定烟道气中各燃烧参数,是用于锅炉调测,优化燃烧效率,节约能源,控制排放的理想设备。

综合烟气分析仪可测量以下参数


  a) 分析箱
  - 烟气参数:O2, CO, NOx, SO2, H2S, HC
  - 差压
  - 用皮托管测量风速
  b)记录仪
  - 温度:表面温度、液体温度
  - 湿度:管道进口湿度或环境空气湿度
  - 用叶轮或热线探头测量风速和风量
  - 用CO2和CO探头测量室内空气质量
  - 用差压和高压探头测量压力
  - 转速
  - 电流,电压

综合烟气分析仪手操器


  手操器可作为单独的多功能测量仪来使用,可测量温度、风速、差压、相对湿度等。其他优点:
  - PC接口(RS232),用于传输数据
  - 带背光功能显示器
  - 菜单功能操作简便,且带有用户自定义功能键
  - 内置数据储存(1 MB)
  - 现场打印数据
  - 触摸屏(选配),用于快速操作及输入
  - 背部带有磁盘,用于现场固定
  - 坚固外壳,防撞击
  - 由分析箱供电,充电电池或外接电源

综合烟气分析仪分析箱


  分析箱是烟气分析仪的心脏。分析箱内包括:
  - 不同的烟气传感器组件及差压测量组件
  - 气体采样泵
  - 帕尔贴烟气预处理组件(带蠕动泵)
  - CO关断功能,用于保护CO传感器
  - 充电NiMH电池
  - 内置电源 (110/230 V, 50~60Hz)
  - 数据内存(1MB)
  - 新鲜空气阀等选配件
  可通过以下3个摆放位置进行测量:平放、垂直、提住手柄

汽车尾气分析仪仪器的特点

★采用大屏幕液晶高亮度显示,丰富的中文交互式 菜单操作提示,直观简便,通过菜单切换检测的流程,使操作者无须记忆操作过程,实现操作的傻瓜化。

★ 提供面板 按键和键盘输入2种手动控制方式,可输入并打印车牌号等信息。

★ 气路采用3级过滤方式,过滤器件更换方便。

★ 压力和温度自动补偿,消除了外界压力变化的影响,具有极佳的温度稳定性。

★ 仪器接 口简单方便,有形象生动的图形提示,可避免错误连接。

★ 配备标准的RS232接口,可以与计算机通讯,实现远程控 制。

★ 内置热敏打印机,超静音、快速打印当前测量结果及仪器信息。

★ 具有日历时钟记 忆功能,断电后不影响时钟的运行,仪器可记录车辆检测的日期时间。

★ 提供先进的在线可编程功能,通过RS232口 即可方便升级运行程序。

★ 自动计算发动机空燃比入值;自动计算稀释比,在有稀释存在的情况下,能够显示CO的真 实浓度,真实反映机动车的排放状况。

★ 具有强大的自诊断功能,保证仪器在的良好的状况下工作。

★ 具备油温检测功能,让操作者清楚了解到发动机的工作温度。

★ 具有EOBD诊断功能,让使用者清 楚了解到汽车内部工作的情况,为汽车的维修保养提供了极大的方便。

★ 具有多种可选择的转速测量方式:(1 ) 用于夹持发动机分火线的转速感应夹;(2) 用于夹持柴油车输油管的压力感应夹;(3) 和汽车点烟器连接 的转速探头;(4) 接到汽车电池的电池夹;(5) 对于具有OBD接口的高档车则提供OBD连接器。

★ 灵活的配置方式,可以单独作为不透光烟度计或五气、四气、三气、两气的尾气分析仪来使用。

★ EOBD 即European On Board Diagnostics (欧洲车载诊断系统)的简称,和OBD II相近 ,但更加注重排放控制,2001年1月1日开始推广使用。在欧III排放法规中,EOBD隐含着专门用于排放控制的意思,根据定义,它是“用于排放 控制的车载诊断系统”,而且必须能够通过储存在计算机存储器中的失效代码来识别故障的可能范围。

--------------------------------------------------------------------------------

汽车尾气分析仪主要特点

废气分析仪部分

汽车尾气分析仪烟度部分

测量范围 HC: 0~10000 x 10-6 vol 光吸收系数:0~16 m-1

CO: 0.00~10.00 % vol

CO2: 0.0~20.0 % vol

O2: 0.0~25.0 % vol 不透光度: 0~100 %

Nox: 0~5000 x 10-6 vol

Cocorr: 0.00~10.00 % vol

入: 0.6~1.2

转速:250~9000 rpm

油温:-5~1250℃

分辨率 HC: 1 x 10-6 vol 不透光度: 1 %

CO: 0.01 % vol

CO2: 0.1 % vol 光吸收系数:0.01 m-1

O2 0.1 % vol (>4.0 % vol)

0.01 % vol (≤4.0 % vol)

Nox: 1 x 10-6 vol

汽车尾气分析仪精度

HC 0~5000x10-6 vol 为±12 x10-6 vol或 ±5% 不透光度: 绝对误差小于±2%

5001~10000x10-6 vol为±10%

CO: ±0.06 % vol或 ±5%

CO2 0~16 % vol 为±0.5 % vol 或 ±5%

16.1~20.0 % vol 为 ±10%

O2 :±0.1 % vol 或 ±5%

NO 0~4000x10-6 vol 为±25 x10-6 vol 或 ±5%

4001~5000x10-6 vol 为 ±10%

转速 在600~1000rpm范围内,不超过± 20rpm

其它范围,不超过±50rpm

油温:不超过5℃

响应时间 HC、CO、CO2 : 不大于10s 1.0±0.1s

O2 :不大于15s

NO:不大于12s

汽车尾气分析仪预热时间

3~5分钟 3~6分钟

工作温度 +5℃~+40℃

储藏温度 -40℃~+50℃

调零方式 自动或手动

电源电压 220V±10% , 50Hz±1%

其它 探头承受温度<200℃ 光通道的有效长度:215mm

--------------------------------------------------------------------------------

CEMScems系统概念

CEMS是英文Continuous Emission Monitoring System的缩写,是指对大气污染源排放的气态污染物和颗粒物进行浓度和排放总量连续监测并将信息实时传输到主管部门的装置,被称为“烟气自动监控系统”,亦称“烟气排放连续监测系统”或“烟气在线监测系统”。CEMS分别由气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统和数据采集处理与通讯子系统组成。气态污染物监测子系统主要用于监测气态污染物SO2、NOx等的浓度和排放总量;颗粒物监测子系统主要用来监测烟尘的浓度和排放总量;烟气参数监测子系统主要用来测量烟气流速、烟气温度、烟气压力、烟气含氧量、烟气湿度等,用于排放总量的积算和相关浓度的折算;数据采集处理与通讯子系统由数据采集器和计算机系统构成,实时采集各项参数,生成各浓度值对应的干基、湿基及折算浓度,生成日、月、年的累积排放量,完成丢失数据的补偿并将报表实时传输到主管部门。烟尘测试由跨烟道不透明度测尘仪、β射线测尘仪发展到插入式向后散射红外光或激光测尘仪以及前散射、侧散射、电量测尘仪等。根据取样方式不同,CEMS主要可分为直接测量、抽取式测量和遥感测量3种技术。

烟气:实指企业在生产过程中所产生的废气污染,包括:SO2、NOx、颗粒物、含氧量、温度、湿度、流量等。

排放:指企业把生产所产生的废气排放到大气中的过程。

连续:指企业的排放是一个连续的过程以及本系统的实时监控也是一个连续的过程。

监测:指本系统可以实时监测企业对排放的废气中的有害物质是否超标并同时向上级部门自动传输实时监测得出的数据。

系统:指本产品的硬件和控制软件是一个整体。

CEMSCEMS的分类

烟气 CEMS 按测量方式分可分为三类:抽取式监测系统、现场监测系统和遥测系统。

CEMS直接抽取式烟气 CEMS

烟气通过前端填有滤料并具有防止烟气中水份在管路中冷凝的加热、保温装置的采样管和导气管,整体控温在 120~160℃,在烟气进入分析仪前快速除去烟气中的水份,把烟气温度冷却到≤15℃,或比环境温度低 11℃后,再进行测定的 CEMS。

CEMS稀释抽取式烟气 CEMS

烟气通过前端填有滤料的“恒流稀释探头”和导气管,经纯净空气稀释的烟气进入分析仪进行测量的 CEMS。

CEMS现场烟气 CEMS

由直接插入烟道或管道安装在探头前端的电化学或光电传感器或发射一束光穿过烟道或管道对烟气进行测量的 CEMS。

CEMScems产品的应用:

应用该产品必须有国家环保部门的认证证书以及计量生产许可证等,目前主要应用于各种工业废气排放源的连续监测中,包括火力电厂,垃圾焚烧电厂,化工厂,造纸厂等行业,具有很强的适用性,能够在线测量 SO2 浓度、NOx 浓度、CO 浓度、颗粒物浓度、含氧量、温湿度、压力和流速等多项气体参数。

CEMScems产品的标准:

以下标准由中华人民共和国环境保护部制定:

固定污染源烟气排放连续监测技术规范(试行)[1]

固定污染源烟气排放连续监测系统技术要求及检测方法(试行)[2]

固定污染源监测质量保证与质量控制技术规范(试行)[3]

固定源废气监测技术规范[4]

固定污染源排放烟气黑度的测定林格曼烟气黑度图法[5]

大气环境保护标准目录[6]

元素分析仪仪器介绍

高频红外碳硫分析仪器配合高频感应燃烧炉能快速、准确地测定铁合金、不锈钢、碳钢、合金钢、铸铁、球铁、有色金属、稀土金属、水泥、矿石、焦炭、煤,炉渣、陶瓷、催化剂、铸造型芯砂、铁矿、无机物有机物及其它材料中碳、硫两元素的含量。该产品是国际、国内先进技术融合的结晶.是集光.机、电、计算机、分析技术于一体的高新技术产品,多项技术国内领先,整机性能可与进口产品相媲美,具有测量范围宽、抗干扰能力强、功能齐全、操作简单、分析结果快速准确等特点。

高频红外碳硫分析仪器的主要技术参数:

1、测量范围:碳:0.00001%-99.999%

硫:0.00001%-99.999%

2、分析误差:碳符合ISO9556-89标准 硫符合ISO4935-89标准

3、分析时间:25-60秒可调,一般在35秒左右。

4、电子天平:称量范围:0-120g读数精度:0.0001g

5、高频炉:功率:2.5KVA 频率:18MHz

高频红外碳硫分析仪器的主要特点:

1、采用低噪声、高灵敏度、高稳定性的红外探测器。

2、整机模块化设计,提高了仪器的可靠性。

3、电子天平自动联机,可不定量称样。

4、WINDOWS全中文操作界面,操作方便,易于掌握。

5、软件功能齐全,提供文件帮助、系统监测、通道选择、数据统计、结果校正、断点修改、系统诊断等四十多项功能。

6、动态显示分析过程中的各项数据和碳、硫释放曲线。

7、测量线性范围宽,并可扩展。

8、高频电路设计合理,高频炉功率可调,适合于不同材质样品分析要求。

9、炉头自动清扫装置,可减少粉尘对分析结果的影响。

10、炉头加热装置,使硫的转化率趋于一致,提高了硫测定的稳定性。

元素分析仪分析仪器

技术参数

援引美国加联数据,测量范围:(因该仪器可检测的元素较多,现以钢铁中的C、S、Mn、P、Si、Cr、Ni、Mo、Re、电脑多元素一体化分析仪器

Mg、Fe、

Cu、Al、V、W、Ti等常见元素为例)

碳:0.001—10.00% 、 硫: 0.0005—0.5000% 、

锰0.10~15.00%、 硅0.10~5.00%、 磷0.005~0.80%、

铬0.01~25.0%、 钼0.101~6.00%、镁0.010~0.100%、

镍0.010~30.0%、 稀土0.01~0.100%、……

如改变测试条件,该范围可相应扩大。

◇ 分析时间:五分钟左右(红外分度+比色)

◇ 分析误差:优于GB223.3~5~1988、GB223.68~69-1997等国家标准

◇ 分析方法:碳硫采用红外光度分析方法;其他多元素采用机外溶样,光电比色法,波长范围400~800nm

电脑控制连续可调。

◇ 标样曲线:多元素部分记忆贮存99条曲线(可根据用户需要任意增加),采用回归方法,建立曲线方程。

◇ 输入输出方式:品牌电脑控制、数据导出的格式可根据实验室要求任意设置,打印机输出。

主要特点

◇ 品牌电脑微机控制,全中文菜单式操作,台式打印机打印结果。

◇ 碳硫分析采用红外光度分析方法,显著提高分析精度。

◇ 采用最新计算机和单片机技术实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,定量加液准确可靠,试剂量少等特点,提高了分析的准确度和精密度,能直接显示质量分数并打印。

◇ 在国内首创元素分析仪用衍射光栅数码电机波长可调光学系统。产品采用可由计算机控制的元素分析仪专用的衍射光栅单色体,实现波长数码可调,即任意输入所需波长,光学系统即调整至指定波长,从而使产品可以实现由计算机控制,根据被测材料元素的要求,方便的迅速设定所需波长,可用于钢铁、铜铝等各种金属、非金属材料及其合金的多种元素分析。

◇ 衍射光栅数码电机波长可调光学系统,提高了波长调整的步进精度,可以达到优于1nm的水平。

◇ 产品智能化水平大幅提高,操作者可以在选择所测元素后,产品即自动调整至检测该元素所需的波长,为产品的推广使用,提供便利。

◇ 采用计算机实现程序控制和数据处理。首创元素分析仪不定量称样功能,准确可靠,方便用户操作。

◇ 可快速更换不同厚度比色杯;

◇ 采用冷光源专利技术、进口光电元件,自校零点和满度;

◇ 电子天平联机不定量称样,计算机自动读入重量或人工键入可选,方便分析操作。

◇ 系统稳定性好,抗干扰能力强,分析结果准确、可靠。

◇ 硫滴定加液采用专利无电极控制专利技术,采用专利防崩塞技术,有效降低故障率;

◇ 分析结果可长期大量保存,并可进行产品质量跟踪分析。

◇ 可记忆贮存99条曲线(可根据用户需要任意增加),采用回归方法,建立曲线方程。

◇ 机外溶样、操作方便,没有阀门和管道老化,延长使用寿命。

元素分析仪金属分析

金属元素分析仪是国内一款新型的综合性分析仪,一台仪器可满足碳钢、合金钢、不锈钢、灰铁、球铁、耐热钢、玛钢、耐磨钢与铸铁等材料中的C、S、Mn、P、Si、Cr、Ni、Mo、Cu、Ti、V、Al、W、N金属多元素分析仪

b、Mg、稀土总量、Co等元素含量的检测,建立了功能强大的数据库,用于分析结果数据及工作曲线的储存和查询,其数据的修改和曲线的增删方便。采用品牌电脑微机控制,并配备了电子天平,全中文菜单式操作,台式打印机打印结果。

元素分析仪主要技术参数

气体容量法测碳、碘量法测硫

1、测量范围:C:0.02-6.00%(需改变称样量)S:0.003-2.00%

2、测量时间:45秒左右(不含取样称样时间)

3、测量精度:符合GB223.69-97、GB223.68-97标准

光电比色分析法

1、量程范围:0-1.999A吸光度值,0-99.99%浓度值

2、测量精度:符合GB223-88标准

3、可测元素:硅、锰、磷、镍、铬、钼、铜、钛等

元素分析仪主要特点

1、该系统由PC机控制,可完成绝大多数金属材料中元素的含量测定,系统程序的编制采用目前时尚的可视化编程语言,因此系统的功能强大,界面友好。

2、系统在分析过程中,零点和满度自动跟踪,并由PC机进行辅助定标,保证了测量精度。系统的操作简单快捷。

3、电子天平和系统联机,实现了分析过程的不定量称样,提高了系统的分析速度。

4、系统建立了功能强大的数据库,用于分析结果数据及工作曲线的储存和查询,其数据的修改和曲线的增删均十分方便。

元素分析仪电脑分析

是国内较新型的一款多元素分析仪,可检测普碳钢、低合金钢、高合金钢、生铸铁、球铁、电脑多元素分析仪

合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。共五个大通道,每个通道各有三十个小通道(可储存30条工作曲线),原则上共可检测150个元素,品牌电脑微机控制,全中文菜单式操作,台式打印机打印结果。

元素分析仪主要技术参数

★测量范围:(以Mn、P、Si、稀土、Mg等为例)

Mn:0.010~20.500% P:0.0005~1.0000%

Si:0.010~6.000% ΣRE:0.010~0.500%

Mg:0.010~0.200% Cr:0.010~38.000%

Ni:0.010~48.000% Mo:0.010~7.000%

Ti:0.010~5.000%

★测量精度:符合GB/T223.3-5-1988等标准

★比色时间:2秒

若改变测试条件,测量范围可相应扩大

元素分析仪主要特点

★是国内较新型的一款多元素分析仪,可检测普碳钢、低合金钢、高合金钢、生铸铁、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。

★采用品牌电脑微机控制,中文菜单式操作,台式打印机打印分析结果;

★每台仪器设有五个大通道 ,每个通道可贮存30条工作曲线,每条工作曲线可检测一种元素含量,原则上共可检测150种元素含量。

元素分析仪有机分析

元素分析仪作为一种实验室常规仪器,可同时对有机的固体、高挥发性和敏感性物质中C、H、N、S、元素的含量进行定量分析测定, 在研究有机材料及有机化合物的元素组成等方面具有重要作用。可广泛应用于化学和药物学产品,如精细化工产品、药物、肥料、石油化工产品碳、氢、氧、氮元素含量,从而揭示化合物性质变化,得到有用信息,是科学研究的有效手段。

微量元素检测仪简介

可用于人体微量元素检测的方法有:同位素稀释质谱法、分子光谱法、原子发射光谱法、原子吸收光谱法、 X 射线荧光光谱分析法、中子活化分析法、生化法、电化学分析法等。但在临床医学上广泛应用的方法主要为生化法、电化学分析法、原子吸收光谱法这几种。其中原子吸收法和CIP属于高档产品,价位一般在十几万至二十几万不等,但随着医疗条件的发展,大部分医院及地矿、科研等部门都开始使用原子吸收法仪器,目前市场占有率最大。

微量元素检测仪生化法

锌原卟啉法、双硫腙法、其它比色法等

微量元素检测仪分析法

自1924年捷克化学家海洛夫斯基领导开发出第一代极谱仪以来至今已近百年,在我国第一代极谱仪为883出生于50年代,这种连续快速滴汞的仪器至今仍用于教育与演示极谱分析基本原理。以 单滴汞电极为工作电极,在汞滴产生后期最后2秒完成一次扫描的极谱分析方法(简称单扫极谱法)称之为近代极谱,在我国上世纪六十年代仿制国外开发成功的JP-1,八十年代开发成功的JP-2为 典型代表,这种极谱仪以分析速度快,重复性好,适应基础实验室需求,在地矿、冶金实验室大量装备,成为得力生产工具。但这种仪器也只是适应了那个年代,稍纵即逝的示波波型。无法详细地观察波形,功能单一只能用于单扫极谱分析。在其后的年代里泰县无电线厂、金坛分析仪器厂都推出过类似仪器,但受技术所限,都回避了显示技术的配合,仪器需另配函数记录仪作为终端显示记录,也注定了仪器走不远。另有厂家仿制JP-1、JP-2极谱仪,都形不成批量与规模。

1987年时任山东电讯七厂厂长的许建民带领技术人员开发新一代极谱仪,利用对示波显示技术熟悉的优势,在当时PC机尚不普及的条件下,用Z80单板机作为核心,开发成功JP3-1示波极谱仪。仪器最大特点为波形可冻结存储,可单条及多条曲线同时显示,可打印波形,打印标准曲线,在同类仪器中居领先水平,获得了用户认可。短短数年连同先期开发成功的MP-1溶出分析仪,成为八九十年代国内同类仪器最大生产厂商,用户遍布多行业。

极谱仪具有广泛的用途范围,可用于无机离子分析,也可用于有机物的分析,有诸多国标行业标准,地方标准都采用极谱分析,尤其是在地质、冶金、土壤、卫生防疫、理化检验。尽管极谱分析采用滴汞电极作为工作电极,在环保呼声日高的今天有些不合时宜,但处理得当,汞在封闭环境下运行,对环境并无影响,如同血压计,尽管多种方式都有,但许多大夫习惯使用水银血压计,且这种血压计的汞并不外泄,在封闭系统内使用。除此之外极谱仪的优势明显,分析范围从无机物到有机物,从微量到常量,价格适中,尤其适应基础实验室的分析检验工作。

国内同类仪器仿制多创新少,具有能力在新领域开拓的企业更为鲜见,因此国内同类仪器同质化严重,无特色,这是众所周知的事实,例如:国内凡是有极谱仪功能的仪器均使用传统的滴汞电极,而这种电极自海洛夫斯基发明极谱仪至今已近百年。

再如:极谱仪只有一种工作模式,这就是进行电压扫描,检测电流的工作模式。人们不知另有一种工作模式,还有所有的极谱仪都只有一种线扫极谱可用,有的虽标榜有其他功能,但受一些因素制约并不能实际使用。

再者:个别生产厂商对仪器性能指标中标注灵敏度很高,但实际上远远做不到,经不起认真考核。

通过多年的积累开拓,“从量到质”,该公司产品与国内同类产品比较,已发生巨大变化,已不在一个水平档次。 公司现开发成功静汞电极(实用新型专利 专利号ZL02268447.6)先人一步在产品上应用,仅此一项就拉开了与同类产品的距离(详见技术介绍:静汞电极)

有机元素分析仪基本信息

1897年, 科学家 Max Dennstedt 报告了一个简单的有机元素分析的方法,发表为论文 ''Über Vereinfachung der organischen Elementaranalyse'',采用来自贺利氏铂金冶炼厂(Heraeus Platinum Smelting Factory)生产出高质量高纯度的石英玻璃和铂金,并很快将其应用到碳元素和氮元素的分析中。1923年, [[弗里茨普端格(Fritz Pregl)]] 获得诺贝尔化学奖,以表彰其在“有机化合物微量分析法”的贡献,其研究采用的是贺利氏公司制造的专用元素分析仪器,如今元素分析部门已经从贺利氏分离,建立了独立的Elementar Analysensysteme GmbH,专注CHONS元素分析。

有机元素分析最早出现在19世纪30年代,李比希首先建立燃烧方法测定样品中碳和氢两种元素的含量,他首先将样品充分燃烧,使碳和氢分别转化为二氧化碳和水蒸气,然后分别以氢氧化钾溶液和氧化钙吸收,根据各吸收管的重量变化分别计算出碳和氢的含量。

目前,元素的一般分析法有化学法、光谱法、能谱法等,其中化学法是最经典的分析方法。传统的化学元素分析方法,具有分析时间长、工作量大等不足。随着科学技术的不断发展,自动化技术和计算机控制技术日趋成熟,元素分析自动化便随之应运而生。有机元素分析的自动化仪器最早出现于20世纪60年代,后经不断改进,配备了微机和微处理器进行条件控制和数据处理,方法简便迅速,逐渐成为元素分析的主要方法手段。目前,有机元素分析仪上常用检测方法主要有:示差热导法、反应气相色谱法、电量法和电导法几种。

毕生研究有机元素分析仪的Hans-Pieter Sieper 博士说:现代有机元素分析仪与第一代微量分析仪相比,类似于将“现代发射光谱仪与19 世纪60 年代的Bunsen/Kirchhoff光谱分析仪相比”。现代的微电子学、检测方法和软件已经允许我们开发出分析性能更好、分析效率更高和用户使用更加方便的有机元素分析仪器”。他特别解释从低于1mg 的微量样本到多于1g 或更多的宏量样本的C,H,N,S 和O 的分析能力和将吹扫捕集分离与快速及简便的色谱分离结合起来的可控热解析技术引入元素分析领域。

有机元素分析仪应用范围

元素分析仪作为一种实验室常规仪器,可同时对有机的固体、高挥发性和敏感性物质中C、H、N、S、元素的含量进行定量分析测定, 在研究有机材料及有机化合物的元素组成等方面具有重要作用。可广泛应用于化学和药物学产品,如精细化工产品、药物、肥料、石油化工产品碳、氢、氧、氮元素含量,从而揭示化合物性质变化,得到有用信息,是科学研究的有效手段[1]

节能减排:燃料、煤、油品成分分析;

环境监控:混合肥料、废弃物、软泥、淤泥、矿泥、煤泥、沉淀物、肥料、杀虫剂和木料、固液垃圾。

地质材料:海洋和河流沉积物、土壤、岩石和矿物。

农业产品:植物和叶子、木料、食物、乳制品(如牛奶)。

化学和药物产品:精细化工产品、药物产品、爆炸物、催化剂、有机金属化合物、聚合物、合成橡胶、皮革、纤维材料和纺织产品。

石油化工和能源:煤炭、石墨、焦碳、原油、燃料油、石油、汽油添加剂、润滑油、油品添加剂。

物理性质:水泥、陶瓷、玻璃纤维、轮胎、燃料、色素、建筑材料、绝缘材料。

有机元素分析仪原理

CHNS测定模式下,样品在可熔锡囊或铝囊中称量后,进入燃烧管在纯氧氛围下静态燃烧。燃烧的最后阶段再通入定量的动态氧气以保证所有的有机物和无机物都完全燃烧。如使用锡制封囊,燃烧最开始时发生的放热反应可将燃烧温度提高到1800°C,进一步确保燃烧反应完全。

样品燃烧后的产物通过特定的试剂后形成CO2、H2O、N2和氮氧化物,同时试剂将一些干扰物质,如卤族元素、S和P等去除。随后气体进入还原管,去除过量的氧并将氮氧化物还原成N2,而后通过吹扫捕集吸附柱或者气相色谱柱实现气体分离,然后进入热导检测器。

测定O的方法则主要是裂解法,样品在纯氦氛围下热解后与铂碳反应生成CO,然后通过热导池的检测,最终计算出氧的含量。

金属元素分析仪原理

目前,国内冶金、铸造、机械等行业的用户为分析金属材料中除碳硫以外的微量元素成分时,可使用的仪器有以下几类:

1.光谱分析仪。优点是一次可以分析多种元素,精度较高。缺点是价格太高,一套几十万到上百万,所以目前只有少数大型企业使用。

2.分光光度计。优点是检测波长选择方便,价格不高。缺点是检测结果不能直接显示(要换算);没有曲线建立调用功能,检测不同元素每次要重新定标;比色皿放入和倒出液体不方便;对操作人员的化学分析基础知识要求高,因此不能适应企业现场在线检测分析的需要。

3.比色元素分析仪。优点是使用方便,价格也不高,对操作人员的化学分析基础要求不高,因此被广泛用于企业生产检验现场分析。但由于其产生的历史原因,存在以下先天性缺陷。

光电比色金属元素分析仪是我国在上世纪60年代适应钢铁冶金五大元素(碳、硫、硅、锰、磷)的现场在线检测分析的需要而发展起来的。检测硅、锰、磷研制了元素分析仪(当时叫三元素,三个通道分别预设固定波长检测硅、锰、磷),由于硅、锰、磷检测要求的波长不多,精度要求不高,因此,三元素分析仪较好的满足了钢铁冶金行业现场在线分析元素含量的需要。但现在,各行业需要检测的材料除了钢铁,还有铜合金、铝合金、锌合金,检测的元素也从硅、锰、磷发展到铜、铬、镍、锌、镁、钨、钒、铌、钛、钼、铝、砷、锆、硼、稀土元素等多种元素。传统的光电比色金属元素分析仪普遍存在的以下缺陷,就日益严重的体现出来:

1.测量波长为预设固定,不能连续可调,虽说有些机型可以更换(通过更换滤光片或发光二极管),但对于用户来说仍嫌繁琐,遇到测量超出仪器通道数的元素种类或要检测不同合金材料时,尤其不方便。而且不是所有波长的滤光片和LED可以采购到,使得某些特定元素的测量遇到困难,如镁元素的测量需要576nm的光源,而这样波长的滤光片和LED都无法得到。

2.测量光源大多为直流灯泡加滤光片或冷光源发光二极管,其波长准确度较差。直流灯泡加滤光片方式其波长精度取决于滤光片,元素分析仪大多应用的滤光片,效果最好的也只能达到±15nm。采用发光二极管的波长准确度取决于使用的二极管,大多误差范围在20~30nm,无法保证分析检测的精度。

新材料和新技术的应用,要求各行业的元素分析的种类更多,要求更高,面对传统元素分析仪的固有缺陷和市场压力,不少厂家采取以下应对措施:

1. 增加仪器分析通道数,即增加预设的固定波长数,从而增加可以检测的元素数量;

2. 针对预定的不同用途,预设不同的固定波长,从而形成分别检测不同材料和不同元素的不同型号元素分析仪。

但上述方法都是治标不治本,一来不是所有需要的波长都可以实现,二来波长精度不高的问题还是没有解决,因此仍然无法从根本上解决传统元素分析仪的先天性缺陷。

化学元素分析仪基本信息

化学元素分析仪器的技术性能与原理

电脑多元素联测分析仪是国内先进的一种综合材料分析仪, 是采用计算机技术、传感技术、根据国家标准分析方法,研制成功的新一代钢铁分析仪器,可检测黑色金属中各种元素的含量,如普碳钢、低合金钢、中合金钢、高合金钢、生铸铁、球铁、合金铸铁、耐磨铸铁等多种材料。

碳硫元素的分析是根据国家标准气体容量法和碘量法而研制的,仪器采用智能控制、精密数据采集、电脑菜单命令操作,可同时保存八条标样曲线,测试数据可长时间保存,数据保存量大,可随时打印结果,与电子天平联机,实现了不定量称样,大地提高了测试结果的准确性、快捷性。

其它多种元素的分析是根据朗伯-比耳原理,采用电脑菜单命令操作,理论上可以测定一百五十种元素成分,标配为一个比色箱(具备连接二个比色箱的操作界面),每个比色箱有五个大通道,每个通道可存三十条曲线,共可存储一百五十条曲线(即一百五十通道),测试数据可以长时间保存,数据保存量大,可随时查询历史数据,完全满足日常检测需求。

化学元素分析仪技术性能

1、 分析误差: 符合国家标准 GB223.69-1997 GB223.68-1997等

4、 电源电压: 220v±10% 50Hz±5%配备高精度1KVA以上电子交流式稳压器

5、 Microsoft Windows 操作系统

6、 PⅡ或更高处理器

7、 至少100M硬盘空间

8、 一个CD驱动器

9、 Microsoft windows 支持的VAG或分辨率更高的显示器

10、至少64M RAM

11、品牌打印机

12、鼠标及其他定点品牌设备

元素分析仪器主要技术参数

测量范围:(举例说明)

Mn:0.010~15.00% P:0.0005~1.0000%

Si:0.010~6.000% ΣRE:0.010~0.500%

Mg:0.010~0.200% Cr:0.010~20.000%

Ni:0.010~10.000% Mo:0.010~7.000%

Ti:0.010~5.000%

测量精度:符合GB/T223.3-5-1988等标准

比色时间:2秒

若改变测试条件,测量范围可相应扩大

五大元素分析仪仪器简介

目前国内可以检测钢铁中五大元素的大多都是采用分体式检测,所谓五大元素分析仪是指能分析碳硫锰磷硅五种元素含量的仪器。一体化检测的产品种类较少,仪器在建立标样曲线时,可以自由地输入或删除标样点,反复进行回归处理,根据相关系数来确定曲线取舍。使标样曲线建立完全实现了数字化、公式化,摆脱了人工建立曲线的传统落后方法。可以很方便地调用、修改曲线,进行人机对话,使仪器使用范围有了很大扩展。

五大元素分析仪仪器用途

五大元素分析仪是对钢铁中存在的锰、磷、硅、碳、硫元素含量的检验。钢铁中存在的锰、磷、硅、碳、硫元素是最重要的也是最基本的元素,为此大家习惯称之为钢铁五大元素。按照我国现行标准GB/T5613-1995铸钢牌号表示方法和GB/T5612-1985铸铁牌号表示方法,说明五大元素是区分普通钢铁的牌号及品质,它的含量直接影响钢铁的机械性能。钢铁及铸造企业把对产品五大元素检验作为一项最重要的检验。

微量元素分析仪发展历史

自1924年捷克化学家海洛夫斯基领导开发出第一代极谱仪以来至今已近百年,在我国第一代极谱仪出生于50年代,这种连续快速滴汞的仪器至今仍用于教育与演示极谱分析基本原理。以单滴汞电极为工作电极,在汞滴产生后期最后2秒完成一次扫描的极谱分析方法(简称单扫极谱法)称之为近代极谱,在我国上世纪六十年代仿制国外开发成功和八十年代开发成功的极谱仪为典型代表,这种极谱仪以分析速度快,重复性好,适应基础实验室需求,在地矿、冶金实验室大量装备,成为得力生产工具。但这种仪器也只是适应了那个年代,稍纵即逝的示波波型。无法详细地观察波形,功能单一只能用于单扫极谱分析。在其后的年代里一些仪器厂都推出过类似仪器,但受技术所限,都回避了显示技术的配合,仪器需另配函数记录仪作为终端显示记录,也注定了仪器走不远。另有厂家仿制极谱仪,都形不成批量与规模。

微量元素分析仪背景技术

中国是使用微量元素历史最悠久的国家,中医中药使用石头、泥沙、贝壳和金属治病早已有之,微量元素锌、铁、铜、锰、铬,分别是中医的金、木、水、火、土五行学说的物质基础;随着工业的快速发展,环境污染使原本在自然条件下不能被人类接触并吸收的有害微量元素变得大量被人类吸收,从而危害人类健康,因此检测水、食品、环境、土壤以及生物材料等样品中的微量元素极其重要,为此国家制定了相关标准,用于控制有害微量元素超标,同时预防有益微量元素降低。

微量元素分析仪主要功能

微量元素分析仪主要用于卫生防疫、医院、妇幼保健质量监督、环保科研高校等部门做各种微量分析与痕量分析。通过对样品微量元素的分析给用户提供一些可行性分析观察数据,以便对人体健康及营养进行监控。仪器集电位溶出分析和极谱伏安于一体,大大增加了仪器的检测范围。

微量元素分析仪功能多、操作简便、快捷。许多样品不经消化可直接测定,测定样品可以是毛发、尿素、血液、污水、食品、饮料、矿物、中草药、土壤、空气、化妆品及包装材料等。适用于防疫站、质检所、环保站、水厂、地质矿产、冶金化工、科研院所、高等院校、医院、妇幼保健院等各个领域。可以检测:Pb、Cu、Zn、Fe、Cd、Mn、As、Sa、I、Ca、Mg、Al、Cr、B、Ag、Ba、bi、ga、In、w、bv、s、Te等60余种无机物及色素、维生素、抗菌素酚类、氨基酸、糖精、防腐剂等数百种有机物。 微量元素分析仪对医疗检测起着重要作用。

微量元素分析仪主要作用

微量元素分析仪检测微量元素通过与蛋白质和其他有机基团结合,形成了酶、激素、维生素等生物大分子,发挥着重要的生理生化功能。微量元素首先构成了体内重要的载体与电子传递系统。铁存在于血红蛋白与肌红蛋白之中,在它们执行载氧与贮氧的过程中,铁扮演了十分重要的角色。 酶是生命的催化剂,迄今体内发现的1000余种酶中,约有50%到70%需要微量元素参加或激活,它们在细胞酶系统中功能相当广泛:从弱离子效应到构成高度特殊的化合物——金属酶与非金属酶。谷胱甘肽过氧化物酶是典型的非金属酶,它具有抑制自由基生成。清除过氧化物。保护细胞膜完整性等作用。该酶分子中含有4个硒原子。锌不仅是碳酸酚酶。微量元素分析仪还参与了激素与维生素的合成。众所周知,碘为甲状腺激素的生物合成所必需的;而锌在维持胰岛素的主体结构中亦不可缺少,每个胰岛素分子结合2个锌原子。 维生素B12是胸腺嘧啶核糖核苷酸合成以及最终DNA生物合成与转录所必需的甲基转移的辅酶。该分子中鳌合有一个钴原子的环状结构部分,含有它的化合物——类咕琳辅酶是已知最有效的生物催化剂之一,在许多酶中起着不寻常的分子重排作用。核酸是遗传信息的携带者。微量元素分析仪对核酸的物理、化学性质均可产生影响。多种RNA聚合酶中含有锌,而核昔酸还原酶的作用则依赖于铁。

微量元素分析仪微量元素

人体所需要的各种微量元素都是从食物中得到补充。由于各种食物所含的微量元素种类和数量不完全相同,所以在平时的饮食中,要做到粗、细粮结合和荤素搭配,不偏食,不挑食,就能基本满足人体对各种元素的需要。反之,可造成某些元素的缺乏。人体缺乏某种微量元素会导致疾病,如缺铁导致贫血;缺锌使免疫力下降并影响发育和智力,缺碘发生甲状腺肿大等。若能在药物治疗的同时,辅以食补,效果将会更好。 缺铁:可多食黑木耳、海藻类、动物肝脏、黄花菜、血豆腐、蘑菇、油菜、腐竹、酵母、芝麻、蚬子等。 缺锌:可多食鱼、牡蛎、瘦猪肉、牛肉、羊肉、动物肝肾、蛋类、可可、奶制品、干酪、花生、芝麻、大豆制品、核桃、糙米、粗面粉等。 缺镁:可多食海带、紫菜、芝麻、大豆。 缺碘:可多食海带、紫菜、海鱼、海虾等。 有害的微量元素:铅、汞、等会造成疾病 。(三价的铬是对人体有益的元素,而六价铬是有毒的。)微量元素分析仪对人体健康起着重要的作用。

微量元素分析仪分类

微量元素在人类生命化学过程中起着某种特殊、重要的作用。医学专家们在这方面进行了大量的研究,证明许多疾病与人体内的一些微量元素有密切的关系:如缺锌造成儿童食欲减退、肾功能减退、体格生长迟缓、脑功能障碍、免疫力降低等;铁元素缺乏造成缺铁性贫血等;缺钙造成儿童佝偻病,中老年骨质疏松等;铅超标会影响儿童生长智力发育,严重时造成铅中毒等。从事这方面的基础研究和临床检验,需要对人体血液、尿液、头发中的微量元素进行测定。

市场上的微量元素分析仪主要分为三类:

一种是通过光学原理进行检测,利用光学原理,通过镜头采集放大生成被检查指甲的图像,在电视或监视器上显示肉眼所看不见的东西,进行分析,进而得出结论,用于检测人体骨科所需矿质元素(钙铁锌硒等)是否正常等。其工艺简单价格低,但检测结果不准确。大部分用来促 销保健品,医院诊所是绝对不能用的

。一种是原子吸收光谱分析法,通过火焰的燃烧使被测样品原子化,产生大量基态自由原子,从而吸收由空心阴极灯发射出的被测元素的特征谱线,完成测量过程。这种仪器检测结果准确,但一次性投入太大运营成本高。一般只适合三甲以上的医院。

一种是电化学分析法,仪器价格适中,检测结果准确,符合医院要求,有着明确的国家检验标准,医院一次性投入不高,运营成本低,像县级医院,乡镇医院,妇幼保健院,疾控中心,以及私营医院和诊所最合适用的就是电化学分析的微量元素检测仪。微量元素分析仪分类主要为以上几种,顾客可以根据自己的需要与经济能力来选择自己合适的机型。

微量元素分析仪执行标准

/T108-1999 血中铅的示波极谱测定方法

干粉剂的肝素钠管,硝酸、高氯酸、盐酸酸性混合液加热消化有机成分,使铅变游离态再以示波极谱仪进行峰电流的测定。手工操作/T 20-1996血中铅的石墨炉原子吸收光谱测定方法

肝素抗凝血样以曲拉通X-100做基体改进剂溶血后,硝酸进行消化。以原子吸收分光光度计测定,最低检出限为3 ug/L。T 21-1996血中铅的微分电位溶出测定方法

微分电位溶出法,最低检出限为0.9 ug/L。

从这几个标准来看,血铅的检测应该是用肝素钠抗凝血样,最好使用聚乙烯塑料管。

气相色谱分析仪设备用途

具有自动进样功能气相色谱分析仪,其自动制样进样的功能排除了人工进样所不可避免的操作误差,以超高的精度可广泛应用于各种材料、气体、气味、残留、烟包等相关指标的检测。是检测机构、研究院所、包装企业、食品药品等行业进行气相色谱分析控制的最佳选择。

气相色谱分析仪工作原理

气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当自动制样进样装置将多组份的分析物质推入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质全自动的定性定量分析。自动进样功能的气相色谱分析仪

气相色谱分析仪设备特征

自动制样进样专利设计

微型计算机控制

液晶显示试验参数

二个试样制备恒温室

一次进行双试样试验

防冷凝

反吹清洗功能,避免了试样交叉污染

恒温、程序升温、混合控制多种试验模式

5阶、8阶、n阶(用户要求)线性控制升温

超温、掉温断电保护

双检测器,双柱双气路系统

检测器模块化设计,具有扩展功能

溶剂残留检测模块化设计

基线自动置零,并具掉电保护、参数存储及调用之功能

专业色谱工作站软件支持,处理功能强大

气相色谱分析仪技术指标

样品室A温度:室温+5℃~200℃ 控温精度:±0.1℃

样品室B温度:室温+5℃~200℃ 控温精度:±0.1℃

样气输送管路温度:室温+5℃~150℃ 控温精度±0.5℃

进样切换阀箱温度:室温+5℃~150℃ 控温精度:±0.5℃

定量环进样量:1.0ml 可根据用户要求选装0.5ml、2ml、3ml)

顶空瓶规格:300 ml(常规)

进样时间控制:0~60000秒

顶空平衡加热时间控制:0~60000秒

进样切换时间控制:0~60000秒

色谱柱室温度:控温精度:优于±0.1℃

温度梯度:柱有效区域不大于1%

温度偏差:设定温度与显示温度之间偏差不大于1℃

温度偏差:设定温度与实际温度之间偏差不大于2%

程序升温阶数:5阶、8阶、n阶(用户要求)

升温速率:1~30℃

线性程序升温范围:每分钟30℃时为150℃

每分钟15℃时为300℃

每分钟10℃时为350℃

初温终温控制时间:0~256min

程序升温的重复性:不大于2%

降温速度:由300℃降至50℃所需时间不大于15min

(其他检测器温度升至300℃)

气化室:控温精度:±0.1℃(室温+15℃~200℃);大于200℃为±0.2℃

检测室:控温精度 ±0.1℃(室温+15℃~200℃);大于200℃为±0.2℃

氢火焰离子检测器(FID):检测限:不大于1×10-11g/s(苯)

噪声:不大于记录仪满刻度的1%

漂移:不大于记录仪满刻度的3%/h

热导池检测器(TCD)

(另购):灵敏度:不小于3000mvml/mg(苯、氢气)

噪声:不大于记录仪满刻度的1%

漂移:不大于记录仪满刻度的3%/h

电子捕获检测器(ECD)

(另购):检测限:不大于1×10-13 g/ml(γ-666)

噪声:不大于记录仪满刻度的1%

漂移:不大于记录仪满刻度的3%/h

氮磷检测器(NPD)

(另购):检测限:对氮不大于 5×10-12g(N)/s(偶氮苯)

对磷不大于 5×10-12g(P)/s(乙基-1065)

噪声:不大于记录仪满刻度的1%

漂移:不大于记录仪满刻度的3%/h

火焰光度检测器(FPD)

(另购):检测限:对硫不大于 5×10-11g(S)/s(噻吩)

对磷不大于 1×10-11g(P)/s(乙基-1065)

噪声:不大于记录仪满刻度的1%

漂移:不大于记录仪满刻度的3%/h

主机尺寸:635mm(L) × 490mm(W) × 470mm(H)

主机重量:55 kg + 27 kg(自动制样进样装置)

气相色谱分析仪设备配置

气相色谱分析仪标准配置

气相色谱仪主机、自动制样进样装置、氢火焰离子检测器、色谱分析柱、数据转换器、色谱工作站(软件)、通信电缆

气相色谱分析仪选购件

计算机、填充柱、毛细管柱、数据转换器、色谱工作站、色谱附件

注:气源、试剂、蒸馏水用户自备。兰光色谱分析实验室免费为您建立分析方法。

气相色谱仪简介

气相色谱仪,将分析样品在进样口中气化后,由载气带入色谱柱,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。

气相色谱仪基本构造

气相色谱仪的基本构造有两部分,即分析单元和显示单元。前者主要包括气源及控制计量装置﹑进样装置﹑恒温器和色谱柱。后者主要包括检定器和自动记录仪。色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。

(1)气路系统 气相色谱仪中的气路是一个载气连续运行的密闭管路系统。整个气路系统要求载气纯净、密闭性好、流速稳定及流速测量准确。

(2)进样系统 进样就是把气体或液体样品匀速而定量地加到色谱柱上端。

(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。色谱柱分为填充柱和毛细管柱两类。

(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。

(5)信号记录或微机数据处理系统 近年来气相色谱仪主要采用色 谱数据处理机。色谱数据处理机可打印记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。

(6)温度控制系统 用于控制和测量色谱柱、检测器、气化室温度,是气相色谱仪的重要组成部分。 气相色谱仪分为两类:一类是气固色谱仪,另一类是气液分配色谱仪。这两类色谱仪所分离的固定相不同,但仪器的结构是通用的。

气相色谱仪工作原理

色谱仪利用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。色谱柱的直径为数毫米,其中填充有固体吸附剂或液体溶剂,所填充的吸附剂或溶剂称为固定相。与固定相相对应的还有一个流动相。流动相是一种与样品和固定相都不发生反应的气体,一般为氮或氢气。 待分析的样品在色谱柱顶端注入流动相,流动相带着样品进入色谱柱,故流动相又称为载气。载气在分析过程中是连续地以一定流速流过色谱柱的;而样品则只是一次一次地注入,每注入一次得到一次分析结果。 样品在色谱柱中得以分离是基于热力学性质的差异。固定相与样品中的各组分具有不同的亲合力(对气固色谱仪是吸附力不同,对气液分配色谱仪是溶解度不同)。当载气带着样品连续地通过色谱柱时,亲合力大的组分在色谱柱中移动速度慢,因为亲合力大意味着固定相拉住它的力量大。亲合力小的则移动快。4根柱管实际上是一根,只是用来表示样品中各组分在不同瞬间的状态。样品是由A、B、C3个组分组成的混合物。在载气刚将它们带入色谱柱时,三者是完全混合的,如状态(Ⅰ)。经过一定时间,即载气带着它们在柱中走过一段距离后,三者开始分离,如状态(Ⅱ)。再继续前进,三者便分离开,如状态(Ⅲ)和(Ⅳ)。固定相对它们的亲合力是A>B>C,故移动速度是C>B>A。走在最前面的组分 C首先进入紧接在色谱柱后的检测器,如状态(Ⅳ),而后B和A也依次进入检测器。检测器对每个进入的组分都给出一个相应的信号。将从样品注入载气为计时起点,到各组分经分离后依次进入检测器,检测器给出对应于各组分的最大信号(常称峰值)所经历的时间称为各组分的保留时间tr。实践证明,在条件(包括载气流速、固定相的材料和性质、色谱柱的长度和温度等)一定时,不同组分的保留时间tr也是一定的。因此,反过来可以从保留时间推断出该组分是何种物质。故保留时间就可以作为色谱仪器实现定性分析的依据。

检测器对每个组分所给出的信号,在记录仪上表现为一个个的峰,称为色谱气相色谱仪原理

峰。色谱峰上的极大值是定性分析的依据,而色谱峰所包罗的面积则取决于对应组分的含量,故峰面积是定量分析的依据。一个混合物样品注入后,由记录仪记录得到的曲线,称为色谱图。分析色谱图就可以得到定性分析和定量分析结果。

图中c为气相色谱仪的结构。载气由载气钢瓶提供,经过载气流量调节阀稳流和转子流量计检测流量后到样品气化室。样品气化室有加热线圈,以使液体样品气化。如果待分析样品是气体,气化室便不必加热。气化室本身就是进样室,样品可以经它注射加入载气。载气从进样口带着注入的样品进入色谱柱,经分离后依次进入检测器而后放空。检测器给出的信号经放大后由记录仪记录下样品的色谱图。

气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。

气相色谱仪常见检测器

1)热导检测器

热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。

2)氢火焰离子化检测器

氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。

3)电子捕获检测器

电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。

4)火焰光度检测器

火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。

5)质谱检测器

质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。

气相色谱仪仪器特点

(1) 大屏幕液晶中文显示,同时显示各路控温参数及载气流量或检测器参数,各种数据一目了然。

(2) 数字流量显示,采用电子质量流量计,从屏幕精确显示载气流量。

(3) TCD断气自动保护,仪器断气或漏气时,微机系统自动断开桥电流,保护钨丝不被损坏。

(4) 先进的气路流程,仪器采用一次进样,三检测器技术,分离效果更好,灵敏度更高。

(5) 自动功能:开机后,仪器自动检测运行状态,如有问题自动显示故障部位及故障类型,并对仪器自我保护。

(6) 专用色谱工作站和色谱数据处理器

(7) 色谱柱(进口担体)和三个净化器 1. 柱室温度:室温+15℃---350℃

2. 控制精度:+0.1℃---0.2℃

3. 检测室温度:室温+30---350℃ 控制精度:+0.1℃---0.2℃

4. 转化炉温度: +30---350℃ 控制精度:±0.1℃

5. 检测精度:H2≤2UL/L O2≤5UL/L N2≤10UL/L

CO≤2UL/L CO2≤2UL/L 烃类≤0.1UL/L

6. 开机稳定时间: <1.0小时

7. 控温范围: 柱室温度:RT+5~300℃ 汽化室、检测器温度:RT+5~350℃

8.程序升温重复性:0.2%

9. 基线噪声: TCD:≤0.1mv FID:≤1×10A

10.基线漂移: TCD:≤0.2mv/30min FID:≤1×10A/30min

11. 灵 敏 度: ≥5000ml/mg FID:≤1×10g/s

12.温度设定范围: RT+5—350℃

气相色谱仪应用范围

环境保护: 大气水源等污染地的痕量毒物分析、监测和研究

生物化学: 临床应用,病理和毒理研究;

食品发酵: 微生物饮料中微量组分的分析研究;

中西药物: 原料中间体及成品分析;

石油加工: 石油化工,石油地质,油品组成等分析控制和控矿研究;

有机化学: 有机合成领域内的成份研究和生产控制;

卫生检查: 劳动保护公害检测的分析和研究;

尖端科学: 军事检测控制和研究;

气相色谱仪操作规程

一、开机前准备

1、根据实验要求,选择合适的色谱柱;

2、气路连接应正确无误,并打开载气检漏;

3、信号线接所对应的信号输入端口。

二、开机

1、打开所需载气气源开关,稳压阀调至0.3~0.5 Mpa,看柱前压力表有压力显示,方可开主机电源,调节气体流量至实验要求;

2、在主机控制面板上设定检测器温度、汽化室温度、柱箱温度,被测物各组分沸点范围较宽时,还需设定程序升温速率,确认无误后保存参数,开始升温;

3、打开氢气发生器和纯净空气泵的阀门,氢气压力调至0.3~0.4Mpa,空气压力调至0.3~0.5Mpa,在主机气体流量控制面板上调节气体流量至实验要求;当检测器温度大于100℃时,按《点火》按钮点火,并检查点火是否成功,点火成功后,待基线走稳,即可进样;

三、关机

关闭FID的氢气和空气气源,将柱温降至50℃以下,关闭主机电源,关闭载气气源。关闭气源时应先关闭钢瓶总压力阀,待压力指针回零后,关闭稳压表开关,方可离开。

四、 注意事项

1、气体钢瓶总压力表不得低于2Mpa;

2、必须严格检漏;

3、严禁无载气气压时打开电源。

气相色谱仪仪器保养

1、仪器内部的吹扫、清洁气相色谱仪停机后,打开仪器的侧面和后面面板,用仪表空气或氮气对仪器内部灰尘进行吹扫,对积尘较多或不容易吹扫的地方用软毛刷配合处理。吹扫完成后,对仪器内部存在有机物污染的地方用水或有机溶剂进行擦洗,对水溶性有机物可以先用水进行擦拭,对不能彻底清洁的地方可以再用有机溶剂进行处理,对非水溶性或可能与水发生化学反应的有机物用不与之发生反应的有机溶剂进行清洁,如甲苯、丙酮、四氯化碳等。注意,在擦拭仪器过程中不能对仪器表面或其他部件造成腐蚀或二次污染。

2、电路板的维护和清洁气相色谱仪准备检修前,切断仪器电源,首先用仪表空气或氮气对电路板和电路板插槽进行吹扫,吹扫时用软毛刷配合对电路板和插槽中灰尘较多的部分进行仔细清理。操作过程中尽量戴手套操作,防止静电或手上的汗渍等对电路板上的部分元件造成影响。

吹扫工作完成后,应仔细观察电路板的使用情况,看印刷电路板或电子元件是否有明显被腐蚀现象。对电路板上沾染有机物的电子元件和印刷电路用脱脂棉蘸取酒精小心擦拭,电路板接口和插槽部分也要进行擦拭。

3、进样口的清洗在检修时,对气相色谱仪进样口的玻璃衬管、分流平板,进样口的分流管线,EPC等部件分别进行清洗是十分必要的。

玻璃衬管和分流平板的清洗:从仪器中小心取出玻璃衬管,用镊子或其他小工具小心移去衬管内的玻璃毛和其它杂质,移取过程不要划伤衬管表面。

如果条件允许,可将初步清理过的玻璃衬管在有机溶剂中用超声波进行清洗,烘干后使用。也可以用丙酮、甲苯等有机溶剂直接清洗,清洗完成后经过干燥即可使用。

分流平板最为理想的清洗方法是在溶剂中超声处理,烘干后使用。也可以选择合适的有机溶剂清洗:从进样口取出分流平板后,首先采用甲苯等惰性溶剂清洗,再用甲醇等醇类溶剂进行清洗,烘干后使用。

分流管线的清洗:气相色谱仪用于有机物和高分子化合物的分析时,许多有机物的凝固点较低,样品从气化室经过分流管线放空的过程中,部分有机物在分流管线凝固。

气相色谱仪经过长时间的使用后,分流管线的内径逐渐变小,甚至完全被堵塞。分流管线被堵塞后,仪器进样口显示压力异常,峰形变差,分析结果异常。在检修过程中,无论事先能否判断分流管线有无堵塞现象,都需要对分流管线进行清洗。分流管线的清洗一般选择丙酮、甲苯等有机溶剂,对堵塞严重的分流管线有时用单纯清洗的方法很难清洗干净,需要采取一些其他辅助的机械方法来完成。可以选取粗细合适的钢丝对分流管线进行简单的疏通,然后再用丙酮、甲苯等有机溶剂进行清洗。由于事先不容易对分流部分的情况作出准确判断,对手动分流的气相色谱仪来说,在检修过程中对分流管线进行清洗是十分必要的。

对于EPC控制分流的气相色谱仪,由于长时间使用,有可能使一些细小的进样垫屑进入EPC与气体管线接口处,随时可能对EPC部分造成堵塞或造成进样口压力变化。所以每次检修过程尽量对仪器EPC部分进行检查,并用甲苯、丙酮等有机溶剂进行清洗,然后烘干处理。

由于进样等原因,进样口的外部随时可能会形成部分有机物凝结,可用脱脂棉蘸取丙酮、甲苯等有机物对进样口进行初步的擦拭,然后对擦不掉的有机物先用机械方法去除,注意在去除凝固有机物的过程中一定要小心操作,不要对仪器部件造成损伤。将凝固的有机物去除后,然后用有机溶剂对仪器部件进行仔细擦拭。

4、TCD和FID检测器的清洗TCD检测器在使用过程中可能会被柱流出的沉积物或样品中夹带的其他物质所污染。TCD检测器一旦被污染,仪器的基线出现抖动、噪声增加。有必要对检测器进行清洗。

HP的TCD检测器可以采用热清洗的方法,具体方法如下:关闭检测器,把柱子从检测器接头上拆下,把柱箱内检测器的接头用死堵堵死,将参考气的流量设置到20~30ml/min,设置检测器温度为400℃,热清洗4~8h,降温后即可使用。

国产或日产TCD检测器污染可用以下方法。仪器停机后,将TCD的气路进口拆下,用50ml注射器依次将丙酮(或甲苯,可根据样品的化学性质选用不同的溶剂)无水乙醇、蒸馏水从进气口反复注入5~10次,用吸尔球从进气口处缓慢吹气,吹出杂质和残余液体,然后重新安装好进气接头,开机后将柱温升到200℃,检测器温度升到250℃,通入比分析操作气流大1~2倍的载气,直到基线稳定为止。

对于严重污染,可将出气口用死堵堵死,从进气口注满丙酮(或甲苯,可根据样品的化学性质选用不同的溶剂),保持8h左右,排出废液,然后按上述方法处理。

FID检测器的清洗:FID检测器在使用中稳定性好,对使用要求相对较低,使用普遍,但在长时间使用过程中,容易出现检测器喷嘴和收集极积炭等问题,或有机物在喷嘴或收集极处沉积等情况。对FID积炭或有机物沉积等问题,可以先对检测器喷嘴和收集极用丙酮、甲苯、甲醇等有机溶剂进行清洗。当积炭较厚不能清洗干净的时候,可以对检测器积炭较厚的部分用细砂纸小心打磨。注意在打磨过程中不要对检测器造成损伤。初步打磨完成后,对污染部分进一步用软布进行擦拭,再用有机溶剂最后进行清洗,一般即可消除。

气相色谱法简介

气相色谱法定义

气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动气相色谱图

相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。

气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的单体作固定相的叫气液色谱。

按色谱分离原理来分,气相色谱法亦可分为吸附色谱和分配色谱两类,在气固色谱中,固定相为吸附剂,气固色谱属于吸附色谱,气液色谱属于分配色谱。

按色谱操作形式来分,气相色谱属于柱色谱,根据所使用的色谱柱粗细不同,可分为一般填充柱和毛细管柱两类。一般填充柱是将固定相装在一根玻璃或金属的管中,管内径为2~6毫米。毛细管柱则又可分为空心毛细管柱和填充毛细管柱两种。空心毛细管柱是将固定液直接涂在内径只有0.1~0.5毫米的玻璃或金属毛细管的内壁上,填充毛细管柱是近几年才发展起来的,它是将某些多孔性固体颗粒装入厚壁玻管中,然后加热拉制成毛细管,一般内径为0.25~0.5毫米。

在实际工作中,气相色谱法是以气液色谱为主。

气相色谱法检测器

气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。这两种检测器都对很多种分析成分有灵敏的响应,同时可以测定一个很大的范围内的浓度。TCD从本质上来说是通用性的,可以用于检测除了载气之外的任何物质(只要它们的热导性能在检测器检测的温度下与载气不同),而FID则主要对烃类响应灵敏。FID对烃类的检测比TCD更灵敏,但却不能用来检测水。两种检测器都很强大。由于TCD的检测是非破坏性的,它可以与破坏性的FID串联使用(连接在FID之前),从而对同一分析物给出两个相互补充的分析信息。

有一些气相色谱仪与质谱仪相连接而以质谱仪作为它的检测器,这种组合的仪器称为气相色谱-质谱联用(GC-MS,简称气质联用),有一些气质联用仪还与核磁共振波谱仪相连接,后者作为辅助的检测器,这种仪器称为气相色谱-质谱-核磁共振联用(GC-MS-NMR)。有一些GC-MS-NMR仪器还与红外光谱仪相连接,后者作为辅助的检测器,这种组合叫做气相色谱-质谱-核磁共振-红外联用(GC-MS-NMR-IR)。但是必须指出,这种情况是很少见的,大部分的分析物用单纯的气质联用仪就可以解决问题。[1]

气相色谱法原理

气相色谱系统由盛在管柱内的吸附剂(表1) 或惰性固体上涂着液体的固定相和不气相色谱法

断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出。以各组分从柱末端流出的浓度 c对进样后的时间t作图,得到的图称为色谱图。当色谱过程为冲洗法方式时,色谱图如图1所示。从色谱图可知,组分在进样后至其最大浓度流出色谱柱时所需的保留时间tR,与组分通过色谱柱空间的时间tM,及组分在柱中被滞留的调整保留时间t'R之间的关系是:气相色谱法式中t'R与tM的比值表示组分在固定相比在移动相中滞留时间长多少倍,称为容量因子k。

从色谱图还可以看到从柱后流出的色谱峰不是矩形,而是一条近似高斯分布的曲线,这是由于组分在色谱柱中移动时,存在着涡流扩散、纵向扩散和传质阻力等因素,因而造成区域扩张。在色谱柱内固定相有两种存放方式,一种是柱内盛放颗粒状吸附剂,或盛放涂敷有固定液的惰性固体颗粒〔载体或称担体(表2)〕;另一种是把固定液涂敷或化学交联于毛细管柱的内壁。用前一种方法制备的色谱柱称为填充色谱柱,后一种方法制备的色谱柱称为毛细管色谱柱(或称开管柱)。

气相色谱法色谱分析

气相色谱法综述

从色谱图可以看到,色谱峰是组分在色谱柱运行的结果,它是判断组分是什么物质及其含量的依据,色谱法就是依据色谱峰的移动速度和大小来取得组分的定性和定量分析结果的。

气相色谱法定性分析

在给定的条件下,表示组分在色谱柱内移动速度的调整保留时间是判断组分是什么物质的指标,即某组分在给定条件下的t恼值必定是某一数值(图 1)。为了尽量免除载气流速、柱长、固定液用量等操作条件的改变对使用t恼值作定性分析指标时产生的不方便,可进一步用组分相对保留值α或组分的保留指数来进行定性分析。计算组分 i在给定的柱温和固定相时的保留指数Ii的公式为(公式4)公式4

式中n与n+1是紧靠在组分i前后流出的正构烷烃的碳原子数气相色谱法 是这两个正构烷烃的调整保留时间。

将样品进行色谱分析后,按同样的实验条件用纯物质作实验,或者查阅文献,把两者所得的定性指标(α值、t恼值或I值)相比较如果样品和纯物质都有定性指标数值一致的色谱峰,则此样品中有此物质。

由于只能说相同物质具有相同保留值的色谱峰,而不能说相同保留值的色谱峰都是一种物质,所以为了更好地对色谱峰进行定性分析,还常采用其他手段来直接定性,例如采用气相色谱和质谱或光谱联用,使用选择性的色谱检测器,用化学试剂检测和利用化学反应等[2]。

气相色谱法定量分析

色谱峰的大小由峰的高度或峰的面积确定。可用手工的方法测量峰高,和以峰高h与峰高一半处的峰宽ω┩的乘积表示峰面积。A=hω┩。新型的色谱仪都有积分仪或微处理机给出更精确的色谱峰高或面积。应该注意,组分进入检测器产生的相应的色谱信号大小(峰高或峰面积)随所用检测器类别和载气的不同而异,有时甚至受到物质浓度和仪器结构的影响。所以须将所得的色谱信号予以校正,才能与组分的量一致,即需要用下式校正组分的重量:

W=f′A式中f′为该组分的定量校正因子。依上式从色谱峰面积(或峰高)可得到相应组分的重量,进一步用下述方法之一计算出组分i在样品中的含量Wi:①归一化法将组分的色谱峰面积乘以各自的定量校正因子,然后按下式计算(公式5)公式5

此法的优点是方法简便,进样量与载气流速的影响不大;缺点是样品中的组分必须在色谱图中都能给出各自的峰面积,还必须知道各组分的校正因子。

② 内标法,向样品中加入被称为内标物的某物质后,进行色谱分析,然后用它对组分进行定量分析。例如称取样品Wm克,将内标物Wφ克加入其中,进行色谱分析后,得到欲测定的组分与内标物的色谱峰面积分别为Ai和Aφ,则可导出:(公式6)公式6

此方法没有归一化法的缺点,不足之处是要求准确称取样品和内标物的重量,选择合适的内标物。

③ 外标法在进样量、色谱仪器和操作等分析条件严格固定不变的情况下,先用组分含量不同的纯样等量进样,进行色谱分析,求得含量与色谱峰面积的关系用下式进行计算,此法适用于工厂控制分析,特别是气体分析;缺点是难以做到进样量固定和操作条件稳定 [2]。

气相色谱法分析方法

分析方法实际上是在某一特定的气相色谱分析中使用的一系列条件。建立分析方法实际上是确定对于某一分析的最佳条件的过程。

为了满足某一特定的分析的要求,可以改变的条件包括进样口温度,检测器温度,色谱柱温度及其控温程序,载气种类及载气流速,固定相,柱径,柱长,进样口类型及进样口流速,样品量,进样方式等。检测器还可能有其它可供调节的参数,这取决于所使用的检测器类型。有一些气相色谱仪还有可以控制样品与载气流向的阀门,这些阀门开启与关闭的时间也可能对分析的效果有重要影响。 该仪器有两个阀门,用来控制载气进入定量管。当定量管充满样品气后,切换阀门,载气就会通过定量管。载气的压强会将样品带入到色谱柱中进行分离。

气相色谱法载气选择与载气流速

典型的载气包括氦气、氮气、氩气、氢气和空气。通常,选用何种载气取决于检测器的类型。例如,放电离子化检测器(DID)需要氦气作为载气。不过,当对气体样品进行分析的时候,载气有时是根据样品的母体选择的,例如,当对氩气中的混合物进行分析时,最好用氩气作载气,因为这样做可以避免色谱图中出现氩的峰。安全性与可获得性也会影响载气的选择,比如说,氢气可燃,而高纯度的氦气某些地区难以获得。(参见:氦气——分布与生产) 很多时候,检测器不仅仅决定了载气的种类,还决定了载气的纯度(虽然对灵敏度的要求也在很大程度上影响载气纯度的要求)。通常来说,气相色谱中所用的载气,纯度应该在99.995%以上。用于标识纯度的典型商品名包括“零点气级”,“高纯度(UHP)级”,“4.5级”和“5.0级”。[3] 载气流速对分析的影响在方式上与温度类似(见下文)。载气流速越高,分析速度越快,但是分离度越差。因此,最佳载气流速的选择与柱温的选择一样,都需要在分析速度与分离度之间取得平衡。二十世纪九十年代之前生产的气相色谱仪的载气流速往往通过载气入口的压力(柱前压)进行控制,实际的载气流速则在柱的出口端通过电子流量计或皂膜流量计进行测定。这样的一个过程常常很复杂,很耗时间,而且往往令人沮丧。在整个运行过程中,柱前压不能再改变,气流必须稳定。气体流速与柱前压的关系可以通过可压缩流体的Poiseuille方程来计算。 不过,很多现代的气相色谱仪已经能用电路自动测定气体流速,并通过自动控制柱前压来控制流速。因此,载气压强与流速可以在运行过程中调整。柱前压/气流控制程序(与温度控制程序类似)随之出现。

气相色谱法进样口类型与流速

进样口类型和进样技术通常与样品存在的形态(液态、气态、被吸附、固态)以及是否存在需要气化的溶剂有关。如果样品分散良好,并且性质已知,那么它就可以通过冷柱头进样口直接进样;如果需要蒸发除去部分溶剂,就使用分流/不分流进样口(通常用注射器进样);气体样品(如来自气缸)通常用气体阀进样器进样。被吸附的样品(如在吸附管上)可以通过外部的(在线或离线)解吸装置(如捕集-吹扫系统)或者在分流/不分流进样器中解吸(使用固相微萃取技术)。

气相色谱法样品量与进样技术

进样技术气相色谱中的十分之一原则 真正的气相色谱分析过程从样品进入色谱柱开始。毛细管气相色谱法的发展使得进样技术面临着很多实践中的问题。柱上进样技术多用于填充柱而不适用于毛细管柱。在毛细管气相色谱仪中的进样技术应该满足以下两个条件:进样量不得超过柱的容量;与展开过程引起的样品展宽相比,进样后的塞式流宽度应该很小。如果不能满足这一要求,色谱柱的分离能力将会下降。一个普遍的规则是,注入的体积,Vinj,和检测器的体积,Vdet,应该只有样品中包含被分析物的部分出柱时的体积的十分之一。[3]以下是一些优秀进样技术应当满足的一般要求:应该能使色谱柱达到它的最佳分离效率;对于小量的有代表性的(典型)样品,进样应具有准确性和可重现性;不能改变样品组成(对于具有不同的沸点、极性、浓度与热力学稳定性的物质,进样过程中不应有所差异);应该既适用于痕量分析,也适用于浓度相对较大的样品。

气相色谱法色谱柱的选择

柱温与温度控制程序一个已经拆开以显示出内部毛细管柱的气相色谱仪恒温箱气相色谱仪中的色谱柱放置于温度由电子电路精确控制的恒温箱内。(当分析者说“柱温”时,他实际上指的是恒温箱的温度。不过这种区别并不重要,因此在下文中对这两者并不作区分。)样品通过色谱柱的速率与温度正相关。柱温越高,样品越快通过色谱柱。但是,样品越快通过色谱柱,它与固定相之间的相互作用就越少,因此分离效果越差。通常来说,柱温的选择是综合考虑分离时间与分离度的结果。柱温在整个分析过程中不变的方法称为恒温方法。不过,在大部分的分析方法中,柱温随着分析过程的进行逐渐上升。初温,升温速率(温度“斜率”)与末温统称为控温程序。控温程序使得较早被洗脱的被分析物能够得到充分的分离,同时又缩短了较晚被洗脱的被分析物通过色谱柱的时间。

GC简史

20世纪 30年代,P.舒夫坦和 A.尤肯发展了气固色谱法。P.C.特纳、S.克拉桑、E.克里默接踵于后。气液色谱法则是A.T.詹姆斯和A.J.P.马丁提出的。气固色谱法由于采用了各种特殊性能的吸附剂,现在日益广泛地用于各种气体的分析,但仍受组分的吸附等温线非线性和吸附剂制备重复性差的局限。气液色谱法由于可采用不同性质的固定液,得到更为广泛的应用。由于新的固定液及其制备方法有了新发展,而使固定液流失问题得到较好的克服,现在气相色谱法有时主要指气液色谱法。

GC原理

气相色谱系统由盛在管柱内的吸附剂,或惰性固体上涂着液体的固定相和不断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出。以各组分从柱末端流出的浓度 c对进样后的时间t作图,得到的图称为色谱图。当色谱过程为冲洗法方式时,色谱图如图1所示。从色谱图可知,组分在进样后至其最大浓度流出色谱柱时所需的保留时间tR,与组分通过色谱柱空间的时间tM,及组分在柱中被滞留的调整保留时间t恼的关系是:

式中t恼与tM的比值表示组分在固定相比在移动相中滞留时间长多少倍,称为容量因子k

从色谱图还可以看到,从柱后流出的色谱峰不是矩形,而是一条近似高斯分布的曲线,这是由于组分在色谱柱中移动时,存在着涡流扩散、纵向扩散和传质阻力等因素,因而造成区域扩张。在色谱柱内固定相有两种存放方式,一种是柱内盛放颗粒状吸附剂,或盛放涂敷有固定液的惰性固体颗粒〔载体或称担体(表2)〕;另一种是把固定液涂敷或化学交联于毛细管柱的内壁。用前一种方法制备的色谱柱称为填充色谱柱,后一种方法制备的色谱柱称为毛细管色谱柱(或称开管柱)。

通常借用蒸馏法的塔片概念来表示色谱柱的效能,例如使用“相当于一个理论塔片的高度“H或“塔片数”n来表示柱效。对于填充柱:

对于开管柱:

式中λ是与填充均匀性有关的因素,称为填充不规则因子; γ是柱内填充物使得气体扩散路径弯曲的因素,称为弯曲因子;dp是填充物平均颗粒直径(即粒度);u是载气在柱温、柱压下的线速;Dg是组分在气相中的分子扩散系数;Dl是组分在液相的扩散系数;df是固定液的液膜厚度;dc是开管柱的内径。所以色谱柱的塔片数n=L/H,式中L为色谱柱长;n的数值可用给定的物质作实验,由实验所得到的色谱图(图1)计算得到:

式中ω┩为色谱峰的半高宽,由于气相色谱的组分在固定液中的分配等温线多为线性,如果进样量很小,得到的色谱峰流出曲线最初是用高斯正态分布来描述的,其数学表示式为:

现在实验和理论上都证明了物质的色谱峰形状是不对称的和曳尾的,若用指数衰减修正的高斯分布作为描述色谱峰形状的分布函数,则更为确切:

式中A表示峰面积;tG表示高斯峰的中心位置;σ表示高斯峰的标准方差;τ表示指数衰减函数的时间常数;t′为积分变量。

上面曾经指出,两组分的分配系数必须有差异,其色谱峰才能被分开。有了差异,分离时所需的柱效n也就不相同,所以要判别两色谱峰分离的情况(图2),还需要采用色谱柱总分离效能指标R

nR的关系为:

式中α′是组分相对保留值;α是组分校正相对保留值。从上式可知,选择适宜固定液和具有给定塔片数的色谱柱后,应该通过改变色谱柱温来调节α′值,从而满足将两组分分离至给定R值的分离程度。

GC仪器装置操作

气相色谱仪流程图见图3。

气流系统  指载气及其他气体(燃烧气、助燃气)流动的管路和控制、测量元件。所用的气体从高压气瓶或气体发生器逸出后,通过减压和气体净化干燥管,用稳压阀、稳流阀控制到所需的流量。

分离系统  由进样室与色谱柱组成。进样室有气体进样阀、液体进样室、热裂解进样室等多种型式。色谱柱通常为内径2~3毫米、长1~3米、内盛固定相的填充柱,或内径0.25毫米、长20米以上、内涂固定液的开管柱。样品从进样室被载气携带通过色谱柱,样品中的组分在色谱柱内被分离而先后流出,进入检测器。

检测系统  包括检测器、微电流放大器、记录器。检测器(表3)将色谱柱流出的组分,依浓度的变化转化为电信号,经微电流放大器后,把放大后的电信号分别送到记录器和数据处理装置,由记录器绘出色谱流出曲线。

数据处理系统  简单的数据处理部件是积分仪。新型的气相色谱仪都有微处理机作数据处理。

温度控制系统及其他辅助部件  温度控制器用于控制进样室、色谱柱、检测器的温度。如果色谱柱放置在有鼓风的色谱炉内,则要求色谱炉能在恒定温度或程序升温下操作。重要的辅助部件有顶空取样器、流程切换装置等。

流动相即载气,可用氦气、二氧化碳、氢气、氮气等。载气的选择与纯化的要求取决于所用的色谱柱、检测器和分析项目的要求,如对有些固定相不能与微量氧气接触,又如对热传导池检测器宜用氢气作载气;对电子捕获检测器须除去载气中负电性较强的杂质,以利于提高检测器的灵敏度。用分子量小的气体作载气时可用较高的线速,这时柱效下降不大,却可以缩短分析时间,因为分子量小的气体粘度小,柱压增加不大,并且在高线速时可减小气相传质阻力。用氢气作载气时,在填充柱和开管柱中的流速可分别选用35和2毫升/分左右。

固定相  一般来说,宜按“相似性”原则选择固定液;分析非极性样品时用非极性固定液;分析强极性样品时用极性强的固定液(表4)。把固定液涂敷于开管柱的内壁,或涂渍在载体上制成填充柱的固定相,均勿太厚。开管柱的df宜为0.2~0.4微米,填充柱的固定液含量宜为3%~10%。载体颗粒约为柱径的0.1,即80~100目较好。这样,组分在液相中传质快,载体粒度较小而又未增大填充不均匀性,有利于在较低的温度下分析高沸点组分及缩短分析时间。

操作温度  进样室的温度应根据进样方法和样品而定。气化方式进样时,气化温度既要使组分能充分气化,又不会分解(裂解进样除外)。检测室的温度以稍高于柱温为好,可避免组分冷凝或产生其他问题。色谱柱温的确定要作综合考虑,即要照顾到固定相的使用温度范围、分析时间长短、便于定性和定量测定等因素。最好能在恒温下操作,沸程很宽的样品才采用程序升温操作。满意的操作温度须由实验求得。

样品预处理  欲分析的化合物常用化学反应的方法转变成另一种化合物,这称为衍生物的制备。然后再对衍生物进行色谱分析。预处理的好处是:①许多化合物挥发性过低或过高,极性很小或热稳定性差,不能或不适于直接取样注入色谱分析仪进行分析,其衍生物则可以很方便地进入色谱仪;②一些难于分离的组分,转化成衍生物就便于分离和进行定性分析;③用选择性检测器检测可获得高灵敏度的衍生物;④样品中有些杂质因不能成为衍生物而被除去。

气相色谱法最常用的化学衍生物法有硅烷化反应法、酰化反应法和酯化反应法(有重氮甲烷法、三氟化硼催化法和季硼盐分解法等)。在制备化学衍生物时要特别仔细,否则会带来严重的错误。

GC定性定量分析

从色谱图可以看到,色谱峰是组分在色谱柱运行的结果,它是判断组分是什么物质及其含量的依据,色谱法就是依据色谱峰的移动速度和大小来取得组分的定性和定量分析结果的。

定性分析  在给定的条件下,表示组分在色谱柱内移动速度的调整保留时间是判断组分是什么物质的指标,即某组分在给定条件下的t恼值必定是某一数值(图 1)。为了尽量免除载气流速、柱长、固定液用量等操作条件的改变对使用t恼值作定性分析指标时产生的不方便,可进一步用组分相对保留值α或组分的保留指数来进行定性分析。计算组分 i在给定的柱温和固定相时的保留指数Ii的公式为:

式中nn+1是紧靠在组分i前后流出的正构烷烃的碳原子数,是这两个正构烷烃的调整保留时间。

将样品进行色谱分析后,按同样的实验条件用纯物质作实验,或者查阅文献,把两者所得的定性指标(α值、t恼值或I值)相比较,如果样品和纯物质都有定性指标数值一致的色谱峰,则此样品中有此物质。

由于只能说相同物质具有相同保留值的色谱峰,而不能说相同保留值的色谱峰都是一种物质,所以为了更好地对色谱峰进行定性分析,还常采用其他手段来直接定性,例如采用气相色谱和质谱或光谱联用,使用选择性的色谱检测器,用化学试剂检测和利用化学反应等。

定量分析  色谱峰的大小由峰的高度或峰的面积确定。可用手工的方法测量峰高,和以峰高h与峰高一半处的峰宽ω┩的乘积表示峰面积。A=hω┩。新型的色谱仪都有积分仪或微处理机给出更精确的色谱峰高或面积。应该注意,组分进入检测器产生的相应的色谱信号大小(峰高或峰面积)随所用检测器类别和载气的不同而异,有时甚至受到物质浓度和仪器结构的影响。所以须将所得的色谱信号予以校正,才能与组分的量一致,即需要用下式校正组分的重量:

W=fA式中f′为该组分的定量校正因子。依上式从色谱峰面积(或峰高)可得到相应组分的重量,进一步用下述方法之一计算出组分i在样品中的含量Wi:①归一化法,将组分的色谱峰面积乘以各自的定量校正因子,然后按下式计算:

此法的优点是方法简便,进样量与载气流速的影响不大;缺点是样品中的组分必须在色谱图中都能给出各自的峰面积,还必须知道各组分的校正因子。

② 内标法,向样品中加入被称为内标物的某物质后,进行色谱分析,然后用它对组分进行定量分析。例如称取样品Wm克,将内标物Wφ克加入其中,进行色谱分析后,得到欲测定的组分与内标物的色谱峰面积分别为AiAφ,则可导出:

此方法没有归一化法的缺点,不足之处是要求准确称取样品和内标物的重量,选择合适的内标物。

③ 外标法,在进样量、色谱仪器和操作等分析条件严格固定不变的情况下,先用组分含量不同的纯样等量进样,进行色谱分析,求得含量与色谱峰面积的关系,用下式进行计算:

式中k媴是组分 i单位峰面积百分含量校正值。此法适用于工厂控制分析,特别是气体分析;缺点是难以做到进样量固定和操作条件稳定。

GC优缺点

优点为:①分离效率高,分析速度快,例如可将汽油样品在两小时内分离出200多个色谱峰,一般的样品分析可在20分种内完成。②样品用量少和检测灵敏度高,例如气体样品用量为 1毫升,液体样品用量为0.1微升,固体样品用量为几微克。用适当的检测器能检测出含量在百万分之十几至十亿分之几的杂质。③选择性好,可分离、分析恒沸混合物,沸点相近的物质,某些同位素,顺式与反式异构体,邻、间、对位异构体,旋光异构体等。④应用范围广,虽然主要用于分析各种气体和易挥发的有机物质,但在一定的条件下,也可以分析高沸点物质和固体样品。应用的主要领域有石油工业、环境保护、临床化学、药物学、食品工业等。

气相色谱法的缺点为在对组分直接进行定性分析时,必须用已知物或已知数据与相应的色谱峰进行对比,或与其他方法(如质谱、光谱)联用,才能获得直接肯定的结果。在定量分析时,常需要用已知物纯样品对检测后输出的信号进行校正。

气相色谱分类

气相色谱仪图片

气相色谱可分为气固色谱和气液色谱。气固色谱指流动相是气体,固定相是固体物质的色谱分离方法。例如活性炭、硅胶等作固定相。气液色谱指流动相是气体,固定相是液体的色谱分离方法。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。

气相色谱发展

顶空气相色谱

GC色谱的发展与下面两个方面的发展是密不可分的。一是气相色谱分离技术的发展,二是其他学科和技术的发展。

1952年James和Martin提出气液相色谱法,同时也发明了第一个气相色谱检测器。这是一个接在填充柱出口的滴定装置,用来检测脂肪酸的分离。用滴定溶液体积对时间做图,得到积分色谱图。以后,他们又发明了气体密度天平。1954年Ray提出热导计,开创了现代气相色谱检测器的时代。此后至1957年,是填充柱、TCD年代。

1958年Gloay首次提出毛细管,同年,Mcwillian和Harley同时发明了FID,Lovelock发明了氩电离检测器(AID)使检测方法的灵敏度提高了2~3个数量级。

20世纪60和70年代,由于气相色谱技术的发展,柱效大为提高,环境科学等学科的发展,提出了痕量分析的要求,又陆续出现了一些高灵敏度、高选择性的检测器。如1960年Lovelock提出电子俘获检测器(ECD);1966年Brody等发明了FPD;1974年Kolb和Bischoff提出了电加热的NPD;1976年美国HNU公司推出了实用的窗式光电离检测器(PID)等。同时,由于电子技术的发展,原有的检测器在结构和电路上又作了重大的改进。如TCD出现了衡电流、衡热丝温度及衡热丝温度检测电路;ECD出现衡频率变电流、衡电流脉冲调制检测电路等,从而使性能又有所提高。

20世纪80年代,由于弹性石英毛细管柱的快速广泛应用,对检测器提出了体积小、响应快、灵敏度高、选择性好的要求,特别是计算机和软件的发展,使TCD、FID、ECD、和NPD的灵敏度和稳定性均有很大提高,TCD和ECD的池体积大大缩小。

进入20世纪90年代,由于电子技术、计算机和软件的飞速发展使MSD生产成本和复杂性下降,以及稳定性和耐用性增加,从而成为最通用的气相色谱检测器之一。其间出现了非放射性的脉冲放电电子俘获检测器(PDECD)、脉冲放电氦电离检测器(PDHID)和脉冲放电光电离检测器(PDECD)以及集次三者为一体的脉冲放电检测器(PDD),4年后,美国Varian公司推出了商品仪器,它比通常FPD灵敏度高100倍。另外,快速GC和全二维GC等快速分离技术的迅猛发展,促使快速GC检测方法逐渐成熟。

气相色谱特点

色谱流出曲线

气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。

气相色谱原理

气相分析流程图

GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,其过程如图气相分析流程图所示。

待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。

气相色谱组成

气相色谱检测器示意图

气相色谱仪由以下五大系统组成:气路系统、进样系统、分离系统、温控系统、检测记录系统。

组分能否分开,关键在于色谱柱;分离后组分能否鉴定出来则在于检测器,所以分离系统和检测系统是仪器的核心。

气相色谱应用

在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可用来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舱中可用来自动监测飞船密封仓内的气体等等。

色谱实际上是俄国植物学家茨维特(M.S.Tswett)在1901年首先发现的。1903 年3月,茨维特在华沙大学的一次学术会议上所作的报告中正式提出“chromatography”(即色谱)一词,标志着色谱的诞生。他因此被提名为1917年诺贝尔化学奖的候选人。当时茨维特研究的是液相色谱(LC)的分离技术,气相色谱出现在20世纪40年代,英国人马丁(A.J.P.Martin)和辛格(R.L.M.Synge)在研究分配色谱理论的过程中,证实了气体作为色谱流动的可能性,并预言了GC的诞生。与此巧合的是,这两位科学家获得了当年的诺贝尔化学奖。尽管获奖成果是他们对分配色谱理论的贡献,但也有后人认为他们是因为GC而得奖的。这也从另一个方面说明了GC技术对整个化学发展的重要性。

虽然GC的出现较LC晚了50年,但其在此后20多年的发展却是LC所望尘莫及的。从1955年第一台商品GC仪器的推出,到1958年毛细管GC柱的问世;从毛细管GC理论的研究,到各种检测技术的应用,GC很快从实验室的研究技术变成了常规分析手段,几乎形成了色谱领域GC独领风骚的局面。1970年以来,电子技术,特别是计算机技术的发展,使得GC色谱技术如虎添翼,1979年弹性石英毛细管柱的出现更使GC上了一个新台阶。这些既是高科技发展的结果,又是现代工农业生产的要求使然。反过来,色谱技术又大大促进了现代物质文明的发展。在现代社会的方方面面,色谱技术均发挥着重要作用。从天上的航天飞机,到水里游的航空母舰,都用GC来监测船舱中的气体质量;从日常生活中的食品和化妆品,到各种化工生产的工艺控制和产品质量检验,从司法检验中的物质鉴定,到地质勘探中的油气田寻找,从疾病诊断、医药分析、到考古发掘、环境保护,GC技术的应用极为广泛。

气相色谱在石化分析中

气相色谱仪(图3)

在石油和石油化工分析中,GC是非常重要的。从油田的勘探开发到油品质量的控制,都离不开GC这种分析成本低、速度快、分离度和灵敏度高的方法。美国材料与分析协会(ASTM)已开发了、并继续开发各种用于石化分析的GC标准方法。GC在石化分析中的应用主要涉及以下几个方面:

1.油气田勘探中的地球化学分析;

2.原油分析;

3.炼厂气分析;

4.模拟蒸馏;

5.油品分析;

6.单质烃分析;

7.含硫和含氮化合物分析;

8.汽油添加剂分析;

9.脂肪烃分析;

10.芳烃分析;

11.工艺过程色谱分析。

气相色谱在环境分析中

气相色谱仪(图4)

随着社会经济和科学技术的发展,人类文明在飞速进步。另一方面,也对生态环境造成了越来越严重的破坏,环境污染问题已经成为人类所面临的最大挑战之一。世界各国都在努力控制和治理各种环境污染,比如美国环保署(EPA)和中国环保局已经颁布了大量的标准分析方法。GC在环境分析中的应用主要有以下几个方面:

1. 大气污染分析(有毒有害气体,气体硫化物,氮氧化物等);

2. 饮用水分析(多环芳烃、农药残留、有机溶剂等);

3. 水资源(包括淡水、海水和废水中的有机污染物);

4. 土壤分析(有机污染物);

5. 固体废弃物分析。

气相色谱在食品分析中

1.脂肪酸甲酯分析;

2.农药残留分析;

3.香精香料分析;

4.食品添加剂分析;

5.食品包装材料中挥发物的分析。

气相色谱在医药分析中

毛细管气相色谱原理图

1.雌三醇测定;

2.尿中孕二醇和孕三醇测定;

3.尿中胆甾醇测定;

4.儿茶酚胺代谢产物的分析;

5.血液中乙醇、麻醉剂以及氨基酸衍生物的分析;

6.血液中睾丸激素的分析;

7.某些挥发性药物的分析。

气相色谱物理化学研究中

气相色谱图(图1)

1.比表面和吸附性能研究;

2.溶液热力学研究;

3.蒸气压的测定;

4.络合常数测定;

5.反应动力学研究;

6.维里系数测定。

气相色谱聚合物分析方面

1.单体分析;

2.添加剂分析;

3.共聚物组成分析;

4.聚合物结构表征;

5.聚合物中的杂质分析;

6.热稳定性研究。

气相色谱方法

气相色谱填充柱

顶空进样法是气相色谱特有的一种进样方法。适用于挥发性大的组分分析。测定时,精密称取标准溶液和供试品溶液各3-5 ml分别置于容积为8 ml的顶空取样瓶中。将各瓶在60摄氏度的水浴中加热30-40 min,使残留溶剂挥发达到饱和,再用在同一水浴中的空试管中加热的注射器抽取顶空气适量(通常为1 ml)。进样,重复进样3次,按溶剂直接进样法进行计算与处理[1]。

顶空进样法使待测物挥发后进样,可免去样品萃取、浓集等步骤,还可避免供试品种非挥发组分对柱色谱的污染,但要求待测物具有足够的挥发性。

顶空分析是通过样品基质上方的气体成分来测定这些组分在原样品中的含量。其基本理论依据是在一定条件下气相和凝聚相(液相和固相)之间存在着分配平衡。所以,气相的组成能反映凝聚相的组成。可以把顶空分析看作是一种气相萃取方法,即用气体做“溶剂”来萃取样品中的挥发性成分,因而,顶空分析就是一种理想的样品净化方法。传统的液液萃取以及SPE都是将样品溶在液体里,不可避免地会有一些共萃取物的干扰分析。况且溶剂本身的纯度也是一个问题,这在痕量分析中尤为重要。而其做溶剂可避免不必要的干扰,因为高纯度气体很容易得到,且成本较低。这也是顶空气相被广泛采用的一个原因。

作为一种分析方法,顶空分析首先简单,它只取气体部分进行分析,大大减少了样品本身可能对分析的干扰或污染。作为GC分析的样品处理方法,顶空是最为简便的。其次,是可以使气化后进样,顶空分析有不同模式,可以通过优化操作参数而适合于各种样品。第三,顶空分析的灵敏度能够满足法规的要求。第四,顶空进样可相对的减少用于溶解样品的沸点较高的溶剂的进样量,缩短分析时间,但对溶剂的纯度要求较高,尤其不能含有低沸点的杂质,否则会严重干扰测定。最后,与GC的定量分析能力相结合,顶空GC完全能够进行准确的定量分析。

气相色谱过程

顶空GC通常包括三个过程,一是取样,二是进样,三是GC分析。

气相色谱类别

根据取样和进样方式的不同,顶空分析有动态和静态之分。所谓静态顶空就是将样品密封在一个容器中,在一定温度下放置一段时间使气液两相达到平衡。然后取气相部分带入GC分析。所以静态顶空GC又称为平衡顶空GC,或叫做一次气相萃取。如果再取第二次样,结果就会不同于第一次取样的分析结果,因为第一次取样后样品组分已经发生了变化。与此不同的是连续气相萃取,即多次取样,直到样品中挥发性组分完全萃取出来。这就是所谓的动态顶空GC。常用的方法是在样品中连续通入惰性气体,如氦气,挥发性成分即随该萃取气体从样品中逸出,然后通过一个吸附装置(捕集器)将样品浓缩,最后再将样品解析进入GC进行分析。这种方法通常被称为吹扫-捕集分析方法。

气相色谱-质谱联用仪质谱原理

质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理 是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。

顶空气相色谱法操作与优势

顶空色谱进样器可与国内外各种气相色谱仪相连接,它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。

它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比既可避免在除去溶剂时引起挥发物的损失,又可降低共提物引起的噪音,具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。

顶空分析方法随气相色谱分析方法的发展在不断更新和发展,现代顶空分析法已形成一个相对较为完善的分析体系。

主要分为静态顶空分析、动态顶空分析、顶空-固相微萃取三类。

固相微萃取平台

色谱仪产品简介

色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并高速逆流色谱仪

配合适当的检测手段,就称为色谱分析法。

色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。

现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。

色谱仪产品发展

色谱仪是进行色谱分析的装置,包括检测装置,记录和数据处理分析,具有灵敏感,自动化程度高的特点,被广泛应用在化学产品。以下就是色谱仪的简单的介绍。

色谱仪目前正朝微型、高通量、多功能等方向发展,尽管全球毛细管电泳市场份额并不大,但是由于毛细管电泳已广泛应用于蛋白质组学、代谢组学以及中药指纹图谱等领域,因此其未来应用将更为广阔,市场规模将不断扩大,也成为行业发展不能忽视的一点。

离子色谱仪器正逐渐向多个领域发展,尤其是向生命科学领域进军,并取得重要应用。而微型化、毛细管离子色谱、联用色谱由于更能适应市场需求,发展尤为迅猛。在技术方面,微流控技术成为关注焦点,目前已经广泛应用于毛细管电泳、PCR等多种仪器,随着行业标准的不断发展,未来发展将更为快速和规范。

色谱仪产品用途

经过多年的发展,离子色谱已经在生产生活的各种领域发挥着重要的作用。

色谱仪环境分析

离子色谱在其产生初期最重要的应用便是环境样品的分析,其应用对象主要是环境样品中各种阴、阳离子的定性、定量分析。

作为一种快速准确而有效果分析方法,离子色谱广泛应用于微电子、电力工业中高纯水、高纯试剂痕量杂质的分析。

色谱仪食品分析

与传统的分析方法相比,离子色谱法的突出优点是多组分同时进行分析,样品处理简单,因此成为食品和饮料中阴阳离子、有机酸、胺和糖类分析的较好方法。

色谱仪联用技术

离子色谱联用技术是离子色谱发展的一个方向。联用技术的发展,使得离子色谱分析技术的应用范围和检测灵敏度有了很大的提高,关于离子色谱--原子吸收(发射)光谱、离子色谱--电感耦合等离子体、离子色--质谱的联用已有不少报道。

色谱仪工作原理

色谱仪色谱仪

气体工业名词术语。一种对混合气体中各组分进行分析检测的仪器。样品由色谱仪

载气带入,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。

气相色谱仪的构造

气相色谱仪的基本构造有两部分,即分析单元和显示单元。前者主要包括起源及控制计量装 置﹑进样装置﹑恒温器和色谱柱。后者主要包括检定器和自动记录仪。色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。

操作

1)操作要点

1. 参照所属仪器的说明书摆放好仪器,将有关插头对号入座,接地线要牢固接地。

2. 将层析柱接入气路,检查气路是否漏气,熟悉高压气瓶的用法;开总压阀->调节减压阀(使压力为2×10Pa)->调节稳压阀﹑针形阀,使载气流速达到所需要求。

3. 加热层析柱至所需温度(波动值< 0.5℃)。加热进样器,使其温度稍高于样品组分的最高沸点。加热检定器,使其温度与柱温相同或稍高,切勿低于柱温,以防样品蒸气冷凝污染鉴

定器。

4. 打开检定器温压开关,开动记录仪放大部件(对氢火焰离子化检定器是启动直流色谱仪

放大器)。调节检定器,使基线稳定,定好零点,即可开始进样分析。

5. 样品为液体时,可直接用微量注射器由进样口注入,若样品为气体时,即可用气体六通阀或直接用注射器进样。

2)条件的选择

在选好色谱柱的前提下,还应注意下述各点:

1. 载气流速。用氢作载气时,一般填充柱之载气流速为5~10厘米/秒的线性速度。适当的流速,有利于提高分辨率。

2. 柱温。通常采用与样品平均沸点相等或高出10度的柱温为宜。但是,在气液色谱中,流动相以恒温进入色谱柱时,将使相似化合物早馏出峰互相重叠,晚馏出峰宽度增加。若改为单阶

梯式或多阶梯式线性程序升温方式,则可大大提高其分辨率。在选择初步(化合物中最低沸点)升温速率(0.5~6℃/分)和最终温度(化合物中最高沸点,但不高于固定相的沸点)的

基础上,经过试验就可找出与理想分辨率有关的柱温。

3. 进样的体积与速度。普通填充柱的气体样品进样量为0.1~1毫升,液体样品为0.1~2毫升。进样体积过大,会使峰形扁平甚至重叠,有时还会出现畸形峰,不利于测量面积。此外,氢

火焰离子化检定器的进样量应比热导池检定器小。至于进样速度,原则上要求越快越好,这样可提高分离效果,降低进样误差。

色谱仪液相色谱

高效液相色谱(High Performance Liquid Chromatography简称HPLC)又称高速或高压液相色谱。该方法是吸收了普通液相层析和气相色谱的优点,经过适当改进发展起来的。它既有普通液相层析的功能(可在常温下分离制备水溶性的物质),又有气相色谱的特点(即高压,高速,高分辨率和高灵敏度);它不仅适应于很多不易挥发,难热分解物质的定性和定量分析,而且也适用于上述物质的制备和分离。

高效液相色谱按其固定相的性质可分为高效凝胶色谱,疏水性高效液相色谱,反相高效液相色谱高效离子交换液相色谱,高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏,快速,分辨率高,重复性好,且须在色谱仪中进行。

色谱仪离子色谱

离子色谱是高效液相色谱的一种,是分析阴阳离子的一种液相色谱方法,该方法具有选择性好、灵敏、快速、简便等优点,并且可以同时测定多种组分。

通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。

离子交换色谱

离子交换色谱以离子间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。

离子排斥色谱

离子排斥色谱基于Donnan排斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于无机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。

色谱仪对色谱

离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。

该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。

下面我们以离子交换色谱为例简单介绍一下离子色谱的原理。

一事实上酸度下,样品离子和固定相基团之间存在着相互作用,对于不同的样品离子,这种作用的大小是不同的。因此在随流动相通过色谱柱的过程中,作用力强的样品离子保留时间要比作用力弱的离子长,经过一段时间后,就可以实现样品的分离。

以阴离子的分离为例说明一下离子色谱的分离过程。

在色谱柱中,填充了无数的离子交换剂作为离子分离的固定相,固定相上吸附了很多阳离子。

充满色谱柱的流动相为某种盐的溶液,在没有样品进入时,流动相中的阴离子和固定相的阳离子保持平衡。

样品中含有两种待分离阴离子,基中体积较大的A与固定相的正电荷作用力较大,而体积较小的B作用力小。

在样品进入色谱柱后,阴离子A、B与流动相阴离子一同前进,三种离子不断的交替占据与固定相阳离子相吸的位置;样品阴离子A与正电荷的作用力较大因而移动较慢,而B移动较快,从而实现了分离。

最终,因为流动相阴离子的数量有绝对优势,所以样品阴离子A、B都分流出色谱柱,对在不同时间流出色谱柱,对在不同时间流出色谱柱的样品离子进行检测,就可以知道样品组分的种类与含量。

色谱仪典型结构

离子色谱仪的典型结构由输液泵、进样阀、色谱柱、抑制柱、检测器和数据处理系统组成。

输液泵

双头往复泵是非常常用的一种输液泵,它由电机带动凸轮转动,两个柱塞杆往复运动,吸入排出流动相。两个柱塞杆的移动有一个时间差,正好补偿流动相输出的脉冲,因而流速相当平稳。

进样阀

量常用的进样方法是六通阀进样,这种方法进样量的可变范围大,耐高压,而且易于自动化。

色谱柱

分离系统的主要元件是色谱柱,它是色谱分离过程中存放固定相的场所。离子色谱仪的柱填料是离子色谱仪研究的热点,是离子色谱仪发展的主要推动力,发展很快。

离子检测器分为两大类,即电化学检测器和光学检测器,电化学检测器包括电导、直流安培、脉冲安培和积分安培等,而光学检测器包括紫外、可见光和荧光检测器。

其中电导检测器是离子色谱最重要的检测器,现简单介绍如下。

所有的离子化合物(有机离子、无机离子、强酸和强碱)以及可被解离的化合物(弱酸和弱碱)的水溶液都能够导电。电导检测器就是以离子色谱流动相中导电的变化作为定量的依据的。

电导检测器的结构比较简单、检测池在两个电极中间,当在电极上加上电压时,检测池内溶液中的离子就会产生运动。通过对运动产生的电流的测量就可以知道溶液中离子的浓度。

而如果流动相的导电性很高,而样品的导电性较低,那么电导检测器就不会有效的检测出样品离子的浓度。

因此,人们在色谱柱和电导检测器之间加上了一个抑制柱,它可以改变流动相和样品的导电性,从而使样品离子得到灵敏的检测。

变压器油气相色谱分析仪变压器油气相色谱分析仪简介

也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。

仪器配备大屏幕LCD液晶显示界面,菜单式中文操作,显示直观、操作方便。仪器采用双柱并联分流系统,配有热导检测器、双氢焰检测器及甲烷转化器,能一次进样完成H2、O2、CO2、CH4、C2H2、C2H4、C2H6、全分析。

变压器油气相色谱分析仪执行标准

GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》

GB/T 7252-2001《变压器油中溶解气体分析和判断导则》

DL/T 722-2000《变压器油中溶解气体分析和判断导则》

变压器油气相色谱分析仪性能指标

(1)最小检测量:一次进样,进样量为1mL时,油中最小检测浓度:

溶解气体的分析(uL/L)

H2

CO

CO2

CH4

C2H4

C2H6

C2H2

2

2

2

0.1

0.1

0.1

0.1

(2)定性重复性:偏差≤1%

(3)定量重复性:偏差≤3%

变压器油气相色谱分析仪变压器油气相色谱分析仪配置

仪器主机

GC-2010气相色谱仪

1台

进样器

填充柱液体进样口(PIP)

2个

镍转换炉

co co2转换CH4

1套

检测器1

氢火焰检测器(FID)

2套

检测器2

热导检测器(TCD)

1套

色谱柱

油分析柱

2只

外部气源

氮空氢发生器或氮空氢钢瓶

1套

色谱工作站

变压器油专用工作站

1套

振荡仪

自动加热型

1套

标气

绝缘油标气

1瓶

变压器油气相色谱分析仪主要技术特点

1.实现计算机实时控制和数据处理

(1)主控电路采用了功能先进的微处理器、大容量的FLASH及EEPROM存储器的采用,使数据的保存更加可靠;同时集测量、控制、电源于一块电路板的一体化设计提高了仪器的抗干扰性和可靠性;

(2)采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度;

(3)柱箱具有双重的超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;

(4)智能化的双后开门技术,保证仪器在柱箱温度在接近室温工作时也能有良好的控温精度,并能快速降温;

2.高精度、稳定可靠的温度控制系统

(1)主控电路采用了功能先进的微处理器、大容量的FLASH及EEPROM存储器的采用,使数据的保存更加可靠;同时集测量、控制、电源于一块电路板的一体化设计提高了仪器的抗干扰性和可靠性;

(2)采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度;

(3)柱箱具有双重的超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;

(4)智能化的双后开门技术,保证仪器在柱箱温度在接近室温工作时也能有良好的控温精度,并能快速降温;

3.简洁明了的人机对话界面,操作简便,易学易用

(1)仪器采用大屏幕LCD液晶显示技术,显示直观、操作方便、更适合中国国情;

(2)自我诊断功能,能显示故障部位;

(3)触摸式键盘方便使用者对各项操作数据进行设定;

(4)数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;

(5)具有秒表功能;

(6)十种分析参数的存储功能,适应多样品分析场合。

变压器油气相色谱分析仪主要技术指标

1.氢火焰离子化检测器(FID)

(1)圆筒型收集极结构设计,石英喷嘴,响应极高

(2)检测限:≤8×10g/s(正十六烷/异辛烷)

(3)基线噪声:≤2×10A

(4)基线漂移:≤2×10A/30min

(5)线性:≥10

2.热导检测器(TCD)

(1)采用半扩散式结构

(2)电源采用恒流控制方式

(3)灵敏度:≥2500mV·ml/mg(正十六烷/异辛烷)。

(4)基线噪声:≤20μV。

(5)基线漂移:≤100μV/30min。

(6)线性 ≧10

3.大屏幕LCD液晶显示

(1)清晰显示各路温度的设定值,实测值和保护值

(2)实时显示仪器状态

(3)可通过键盘通桥流

(4)十种分析参数的储存功能

4.温控指标

(1)柱 箱:室温上5℃~399℃ 精度±0.1℃

(2)进样器:室温上5℃~399℃ 精度±0.1℃

(3)检测器:室温上5℃~399℃ 精度±0.1℃

(4)转化炉:室温上5℃~399℃ 精度±0.1℃

5.其他参数

(1)尺寸:宽655mm×高50mm×深480mm

(2)重量:~48kg

(3)电源:220V±22V,50Hz,功率≥2kW

功能完善的专用色谱工作站

绝缘油专用色谱工作站是基于windows XP系统开发的最新一代色谱工作站,是经专业设计具有强大功能的实用数据处理系统,其故障判断符合最新的国家标准,数据采集采用24位高精度的USB接口数据采集卡,输入范围可达-2v~ 2v,分辨率 1 μV。

安捷伦GC7890气相色谱仪技术参数

可选择的进样技术,包括顶空进样、吹扫捕集和阀进样

安捷伦GC7890气相色谱仪主要特点

1.大体积进样,省去样品浓缩步骤

2.利用简化的参数输入和系统控制,快速进行方法设置

3.完善的进样选项:分流/不分流进样(0-100 psi 和 0-150 psi)、填充柱进样、冷柱头进样、程序升温汽化进样口和挥发性物质分析接口

4.行业最广泛的灵敏的检测器选项,包括:火焰离子化检测器、热导检测器、微型电子捕获检测器、氮磷检测器、质量选择检测器、 电感耦合等离子体-质谱以及一种改进的火焰光度检测器。改进后的火焰光度检测器对硫的灵敏度是以前检测器的5 倍,对磷的灵敏度是以前检测器的 10 倍,与标准 FPD 相比,对硫和磷都有极佳灵敏度。

5.其他通过安捷伦伙伴可选的检测器:包括 SCD、脉冲火焰光度检测器(PFPD) 和原子发射光谱检测器(AED)

6.内置的 Agilent 7683 自动进样器 控制功能。 如要实现高效率、室温顶空、微量液萃取和不同范围的进样体积,您只需简单地添加进样器和样品盘模块即可

7.可选择的进样技术,包括顶空进样、吹扫捕集和阀进样

8.各种数据处理选项,包括安捷伦 石化行业 QA/QC Cerity 网络化数据系统 和10.安捷伦 ChemStation Plus 系列产品 (包括 ChemStore C/S 和 ChemAccess)

9.具备 快速气相色谱,的所有功能,可为您提供高度准确且一致的结果 - 比标准气相色谱仪快 10 倍

10.内置的法规遵从功能

功率分析仪简介

被广泛用于混合动力电动汽车、电动车、太阳能发电、风力发电、变频器、变频电机和燃料电池等的功率计算和分析[1]。部分分析仪,如WP4000变频功率分析仪,还具备实时波形、波形数据记录及谐波分析等功能。

功率分析仪特点

功率分析仪前端数字化

IEC指出:将被测参量转变为数字量参数更为合理,原因在于对传统模拟量输出变送器的模拟量输出要求是基于有局限的常规技术,并非依据使用被测参量信息的设备的实际需要。

测量的目的是基于某种需要对被测量的信息进行感知、分析

功率分析仪(4张)和处理。其核心价值在于对测量行为所获取的信息“分析和处理”的质量。
  传感器与二次仪表之间的模拟量传输线路,是引入电磁干扰的主要环节;同一电磁环境下,信号越小,传输线路越长,受干扰程度越大。
  电磁环境日益复杂,经实验室计量检定的高精度测量装置,受电磁干扰的影响,在工业现场不一定能够发挥其应有的精度特性,甚至不一定能够正常运行。
  工业社会的快速发展使对测量的准确性、合理性和高效率提出了更高的要求,显而易见,融合着现代计算机技术、网络技术、通讯技术、自动化技术等的数字化设备信息和数据的处理分析能力更强、智能化、自动化程度更高,适应日益复杂的现场电磁环境的能力更强,它必将成为测量系统中不可或缺的核心构件。开发基于前端数字化的传感器/变送器和效率更高、分析运算能力更强的数字化测量二次设备也必然成为测试技术发展的主流方向。

WP3000变频功率分析仪在传感器/变送器环节,即将被测信号数字化,传感器/变送器与二次仪表之间采用数字光纤通讯,避免了信号传输环节的损失与干扰,并方便网络化,智能化应用。

IEC指出:所有仪表和测量装置的误差都必须进行实际测量,未经测量,仅是以其它测量中计算出来的和引用电压、电流和功率因数组合的误差,不能作为评价装置基本误差的依据。

常规的测量方法是:电压/电流传感器先将高电压/大电流信号变换为低电压/小电流信号,再连接到分析仪,分析仪只测量低电压和小电流信号。这种方式下,传感器和分析仪及传输线路都会引入测量误差,一方面加大了测量误差,另一方面也使测量误差不好预计。

变频功率分析仪,不论是低电压、小电流还是高电压、大电流信号,均可采用各种不同量程的变频电量变送器直接连接一次回路,变送器直接输出数字信号,二次仪表只是对数字信号进行必要的运算,并不会增加误差,这样,引入误差的环节只有一个,只需要对变频电量变送器的误差进行试验,即可确定整个系统的误差。

功率分析仪宽幅值范围

普通传感器及仪表一般只能在较窄的范围内保证测量准确度,对于被测信号变化范围较宽时,通常采用多个传感器结合换挡开关进行换挡,以拓宽测量范围。WP3000变频功率分析仪在一个传感器在其内部设置8 个档位,每个档位只测量在本档位量程的50%~100%范围内信号,实现在1%~200%额定输入的范围内实现高准确度测量。由于采用无缝量程转换技术,档位切换时,数据不丢失,可满足各种宽范围内的动态测量。

功率分析仪宽相位范围

以电机及变压器为例,空载时的功率因数很低,而此时的输入功率往往就是设备的主要损耗。低功率因数下的高准确度测量,是评价电机、变压器等高能效产品的重要技术指标。传感器及仪表的角差指标直接影响功率测量准确度,功率因数越低,同样的角差对功率测量的准确度影响越大。大多数仪器仪表的功率测量准确级的参比条件是功率因数等于1,不明示测量难度大的低功率因数下的准确度指标。大多数用于变频电量测量的传感器,不标称相位指标,系统的相位误差不明确,低功率因数时,功率测量准确度处于未知状态。AnyWay系列变频电量测量/计量产品,电压、电流测量具有极小的角差,实现了在0.05~1 功率因数范围内的高准确度测量。

功率分析仪宽频率范围

多数用于变频电量测量的传感器和仪器仪表,往往在适用范围中明示适用于甚至是专业针对变频电量测试,而标称的准确度指标却只能在工频下能够成立。非工频下的测量准确度要么较低,要么不明示,导致用户采购了标称准确度很高的测量设备,测量结果却与实际大相径庭。

WP3000变频功率分析仪实现了在电机、变频器、变压器等关注的全频率内的高准确度测量,以全频率范围内最低的准确度指标标称设备准确度指标。

功率分析仪应用

对于频率偏离工频较大、电压或电流有明显畸变的场合,采用传统的互感器及功率计测量,往往不能保证测量的准确度,应该采用具有宽频带的、具有数字信号处理功能的功率分析仪及宽频带的,低角差的高精度电压、电流传感器组成的系统进行测量。

功率分析仪电机能效评测

对于以混合动力汽车等为代表的高效马达的开发,能准确测量马达的功率、效率和变流器的谐波。

功率分析仪新能源

测量功率调节器的输入直流功率、输出交流功率以及符合PWM波谐波分布特点的谐波分析、总谐波畸变率计算等。通过直流、交流功率计算,能同时测量耗电和发电功率,准确评价其能效。

功率分析仪变频器测试

通过变频电量传感器,能在现场简单地进行变频器输入测和变频器输出测的功率测量,并进行符合PWM波谐波分布特点的谐波分析。

变频器主电路结构一般为“交—直—交”,在整流回路中接有大电容,输入电流为脉冲式充电电流,在逆变输出回路中输出电压信号是受PWM载波信号调制的脉冲波形。因此,在测量仪器的选择上与传统的测量有所不同。面对变频器含有大量谐波、高畸变或是非工频的电量,采用传统的仪表对其进行测量会产生较大的误差,甚至出现测量结果完全错误的情况,准确的测量方法是采用带FFT功能的仪器。

变频器测试

功率分析仪变压器测试

变压器空载试验时,其电流波形畸变率大,整流变压器的输入电流畸变率大,这些高畸变率的电流,含有丰富的高次谐波,其能效评测试验应当采用宽频带的传感器及功率分析仪进行准确测量。

变压器测试原理图

高精度功率分析仪简介

高精度功率分析仪根据特点有时也称宽频功率分析仪或变频功率分析仪。

高精度功率分析仪(4张)

高精度功率分析仪特点

高精度功率分析仪前端数字化

IEC指出:将被测参量转变为数字量参数更为合理,原因在于对传统模拟量输出变送器的模拟量输出要求是基于有局限的常规技术,并非依据使用被测参量信息的设备的实际需要。

测量的目的是基于某种需要对被测量的信息进行感知、分析和处理。其核心价值在于对测量行为所获取的信息“分析和处理”的质量。
  传感器与二次仪表之间的模拟量传输线路,是引入电磁干扰的主要环节;同一电磁环境下,信号越小,传输线路越长,受干扰程度越大。
  电磁环境日益复杂,经实验室计量检定的高精度测量装置,受电磁干扰的影响,在工业现场不一定能够发挥其应有的精度特性,甚至不一定能够正常运行。
  工业社会的快速发展使对测量的准确性、合理性和高效率提出了更高的要求,显而易见,融合着现代计算机技术、网络技术、通讯技术、自动化技术等的数字化设备信息和数据的处理分析能力更强、智能化、自动化程度更高,适应日益复杂的现场电磁环境的能力更强,它必将成为测量系统中不可或缺的核心构件。开发基于前端数字化的传感器/变送器和效率更高、分析运算能力更强的数字化测量二次设备也必然成为测试技术发展的主流方向。

WP4000变频功率分析仪在传感器/变送器环节,即将被测信号数字化,传感器/变送器与二次仪表之间采用数字光纤通讯,避免了信号传输环节的损失与干扰,并方便网络化,智能化应用。

IEC指出:所有仪表和测量装置的误差都必须进行实际测量,未经测量,仅是以其它测量中计算出来的和引用电压、电流和功率因数组合的误差,不能作为评价装置基本误差的依据。

常规的测量方法是:电压/电流传感器先将高电压/大电流信号变换为低电压/小电流信号,再连接到分析仪,分析仪只测量低电压和小电流信号。这种方式下,传感器和分析仪及传输线路都会引入测量误差,一方面加大了测量误差,另一方面也使测量误差不好预计。

WP4000变频功率分析仪,不论是低电压、小电流还是高电压、大电流信号,均可采用各种不同量程的变频电量变送器直接连接一次回路,变送器直接输出数字信号,二次仪表只是对数字信号进行必要的运算,并不会增加误差,这样,引入误差的环节只有一个,只需要对变频电量变送器的误差进行试验,即可确定整个系统的误差。

高精度功率分析仪宽范围内的高准确度测量

普通传感器及仪表一般只能在较窄的范围内保证测量准确度,对于被测信号变化范围较宽时,通常采用多个传感器结合换挡开关进行换挡,以拓宽测量范围。WP4000变频功率分析仪在一个传感器在其内部设置8 个档位,每个档位只测量在本档位量程的50%~100%范围内信号,实现在1%~200%额定输入的范围内实现高准确度测量。由于采用无缝量程转换技术,档位切换时,数据不丢失,可满足各种宽范围内的动态测量。

高精度功率分析仪低功率因数下的高准确度测量

以电机及变压器为例,空载时的功率因数很低,而此时的输入功率往往就是设备的主要损耗。低功率因数下的高准确度测量,是评价电机、变压器等高能效产品的重要技术指标。传感器及仪表的角差指标直接影响功率测量准确度,功率因数越低,同样的角差对功率测量的准确度影响越大。大多数仪器仪表的功率测量准确级的参比条件是功率因数等于1,不明示测量难度大的低功率因数下的准确度指标。大多数用于变频电量测量的传感器,不标称相位指标,系统的相位误差不明确,低功率因数时,功率测量准确度处于未知状态。AnyWay系列变频电量测量/计量产品,电压、电流测量具有极小的角差,实现了在0.05~1 功率因数范围内的高准确度测量。[1]

高精度功率分析仪真正的变频功率测试系统

多数用于变频电量测量的传感器和仪器仪表,往往在适用范围中明示适用于甚至是专业针对变频电量测试,而标称的准确度指标却只能在工频下能够成立。非工频下的测量准确度要么较低,要么不明示,导致用户采购了标称准确度很高的测量设备,测量结果却与实际大相径庭。
  WP4000变频功率分析仪实现了在电机、变频器、变压器等关注的全频率内的高准确度测量,以全频率范围内最低的准确度指标标称设备准确度指标。

高精度功率分析仪技术指标

项目指标条件最高采样频率250kHz

电压测量精度

读数的0.2%

幅值0.75%~150%UN基波频率DC,0.1Hz~400Hz

电流测量精度

读数的0.2%

幅值1%~200%IN基波频率0.1Hz~400Hz

功率测量精度

读数的0.5%

功率因数0.2~1基波频率0.1Hz~400Hz

读数的1%

功率因数0.05~0.2基波频率0.1Hz~400Hz频率测量精度读数的0.02%0.1Hz~400Hz电压过载时间10分钟U<1.5UN电流过载时间3分钟I<2IN

[2]

变频功率分析仪概述

变频电量是指用于传输功率的,并且满足下述条件之一的交流电量:

◆信号频谱仅包含一种频率成分,而频率不局限于工频的交流电信号。

◆信号频谱包含两种或更多的被关注的频率成分的电信号。

变频电量包括:电压、电流、有功功率、无功功率、视在功率、谐波等。

变频功率分析仪是用于各类变频调速系统的电压、电流、功率、谐波等电量测试、计量的新型测量设备,是变频技术高速发展的必然产物,也是变频技术持续健康发展的重要基础仪器,更是变频设备能效评测不可或缺的工具。

变频功率分析仪通用框图

右图所示为变频功率分析仪的通用框图,依据所采用的技术,图中列出的所有部件并非均不可缺少。如有需要,图中的变送电路可以包含各种进行电压、电流变换的模拟量输出的传感器或变送器。图中的传输系统用于传输数字信号,可以是仪器内部的连线,也可以外部的连线,外部连线可以是电缆或光纤或无线传输系统,采用电缆或光纤或无线传输系统时。分析仪在结构上一般包括三个部分:传输系统之前的数字量输出变频电量变送器(包含变频电压变送器、变频电流变送器或二者的组合)、电缆或光纤或无线传输系统、传输系统之后的数字量输入二次仪表。为表述方便,本部分根据传输系统的不同形式,分为一体式变频功率分析仪和分体式变频功率分析仪。

注1:采用分体的方式更为合理,原因是这样可以将数字量输出变频电量变送器移至测量前端,从而缩短模拟量传输线路,可以有效降低传输线路的损耗和干扰。

注2:对于分体式变频功率分析仪,有时将数字量输出变频电量变送器称为数字量输出变频电量传感器,将数字量输入二次仪表称为变频功率分析仪,而将包含传输系统在内的三个部分一起称为变频功率测试系统。但是,本部分规定的变频功率分析仪是上述三个部分的总和。[1]

变频功率分析仪额定值

变频功率分析仪一次电压

220V、380V、660/690V、1000/1140V、3k/3.3kV、6kV、10kV、20kV、35kV。

变频功率分析仪一次电流

10A、12.5A、15A、20A、25A、30A、40A、50A、60A、75A以及它们的十进制倍数或小数。有下划线者为优先值。

变频功率分析仪频率范围

对于变频功率分析仪而言,额定频率范围应该是一组包含下限和上限的数值,额定频率范围由制造厂家自行规定,在规定的额定频率范围内,分析仪的测量误差应满足准确级对应误差限制的要求。

变频功率分析仪辅助电源电压

额定辅助电源电压是指装置运行时在其自身电源端口测得的电压,如有必要,包括制造方提供的或要求装入的串联辅助电阻或附件,但不包括连接电源的导体。

额定辅助电源电压包括交流电源和直流电源。交流电源应采用230/400V。

注:230/400V将是未来唯一的IEC标准电压,并推荐在新系统上采用。IEC 标准化工作将在下阶段考虑把现有系统中的220/380V和240/415V这些不同电压归入230/400V(1±10%)范围内。

变频功率分析仪辅助电源频率

额定电源频率的标准值为直流、50Hz和60Hz。

变频功率分析仪采样速率

采样速率不应低于带宽(或防混叠滤波器截止频率)的两倍。

变频功率分析仪带宽

带宽额定值不应高于采样速率的1/2。[1]

变频功率分析仪准确级标称

变频功率分析仪准确级

对于分体式变频功率分析仪,其测量准确度取决于数字量输出变频电量变送器的准确级,可只对数字量输出变频电量变送器的准确级进行标称,其准确级按照测量用变频电量变送器检定规程进行试验。然而,标称该类变送器准确级时,需与数字量输入的二次仪表配合才能完成准确级试验过程。准确级验证过程中,也完成了数字量输入仪表的数值运算方式方法的正确性。

变频功率分析仪准确级应以该准确级在额定频率范围内、额定电压和/或额定电流下所规定的最大允许误差百分数来表示。

电压、电流和功率的准确级应分别标称;

电压、电流应分别标称真有效值和基波有效值的准确级;

功率应分别标称有功功率和基波有功功率的准确级;

对于电压、电流具备多个量程的分析仪,标称的准确级应适用每个量程。

变频功率分析仪标准准确级

变频功率分析仪的电压、电流测量的标准准确级为:0.05、0.1、0.2、0.5、1;

变频功率分析仪的功率测量的标准基本准确级为: 0.1、0.2、0.5、1、2;

变频功率分析仪的标准角差准确级为: 普通、S1、S2、S3;

变频功率分析仪的功率测量标准准确级为基本准确级与角差准确级的组合,例如:0.1级、0.1S1级、0.1S2级、0.2S3级等等。

若交、直流准确级不同,应同时标称两者的准确级。

变频功率分析仪直流准确级

电网采用变压器变电后,电量不含直流分量,但是,对于直接变频器输出变频电量,由于变频器设计、器件等的影响,可能会输出直流分量,对于电压型变频器而言,小的直流电压分量,可在负载(电机)端产生较大的直流电流,影响电机的正常运行。因此,用于直接测量变频器输出的变频电量分析仪,应该可以测量直流分量。

能够测量直流分量的变频电量变送器,应标注直流准确级,直流准确级应以该准确级在额定电压和/或额定电流下所规定的最大允许误差百分数来表示。

变频功率分析仪谐波准确级

谐波测量准确度与谐波分布特点有关。电网谐波主要为低次谐波,且含量较小。变频电量分析仪用于测量电网谐波时,其准确级要求同GB/T20840.8-2007。

变频器输出PWM波的谐波分布与电网不同,主要有下述特点:

A、 谐波主要集中在开关频率整数倍附近,其谐波频率较高。对于二电平变频器,变频电量变送器的带宽至少是开关频率的6倍以上。对于三电平和多电平变频器,带宽不低于基波频率的10倍以上。

B、 谐波幅值较大,在带宽范围内,可以获取较高的测量精度。

在额定频率范围内,谐波含量大于仪表量程10%时,要求谐波幅值误差不大于等级指数的2倍。

在额定频率范围之外,1/4带宽范围之内,谐波含量大于仪表量程10%时,谐波幅值误差不大于±5%。

调制比大于0.25时,谐波总含量的误差不大于±5%。[1]

变频功率分析仪技术指标

项目 技术指标 条件

带宽 100kHz

最高采样频率 250kHz

电压测量精度 0.2%rd 幅值:0.75%~150%UN;基波频率:DC,0.1Hz~400Hz

电流测量精度 0.2%rd 幅值:1%~200%IN;基波频率:0.1Hz~400Hz

功率测量精度 0.5%rd 功率因数:0.2~1;基波频率:0.1Hz~400Hz

功率测量精度 1%rd 功率因数:0.05~0.2;基波频率:0.1Hz~400Hz

频率测量精度 0.02%rd 0.1Hz~400Hz

电压过载时间 10分钟 U<1.5UN

电流过载时间 3分钟 I<2IN

隔离电压 2UN+1kV 50Hz,1min

功率表概述

功率是表征电信号特性的一个重要参数。在直流和低频范围,可以通过测量电压和电流计算功率,功率的瞬时值可用下式表示:

对于周期信号,一个周期内的瞬时功率的平均值,称为有功功率。有功功率按下式计算:

一种功率表

对于正弦电路,下式成立:

上式中,U、I分别为正弦交流电的有效值,φ为电压与电流信号的相位差。

在超高频和微波频段,有TEM波和非TEM波之分。在TEM波的同轴系统中,电压和电流虽有确切含意,但测量其绝对值很困难。在波导系统中,因为存在不同的电磁模式,电压和电流失去唯一性。在个频段和各传输系统中,功率是单值表征信号强度的重要方法。在射频范围直接测量功率代替了电压和电流的测量。

功率表度量单位

功率定义为单位时间内所做的功。基本单位为瓦(W),1W等于在1秒内做1焦耳的功。常用的功率单位还有兆瓦(1MW=10^6W)、千瓦(1KW=10^3W)、毫瓦(1mW=10-3W)、微瓦(1μW=10-6W)、皮瓦(1Pw=10-12W)。

另一种常用的功率单位以分贝毫瓦(dBm)表示。它以1毫瓦为基准电平P0=1mW,实际功率值P(mW)与P0比较后取对数。这是功率的绝对单位。

也可用分贝瓦(dBW)作为功率单位,此时P0=1W,即1 dBW=3 dBm。

功率表分类

常见变频电量波形及频谱(5张)根据被测信号频率分类

功率计可分为:直流功率计、工频功率计、变频功率计、射频功率计和微波功率计。由于直流功率等于电压和电流的简单乘积,实际测量中,一般采用电压表和电流表替代。工频功率计是应用较普遍的功率计,常说的功率计一般都是指工频功率计。变频功率计是21世纪变频调速技术高速发展的产物。其测量对象为变频电量,变频电量是指用于传输功率的,并且满足下述条件之一的交流电量:

1、信号频谱仅包含一种频率成分,而频率不局限于工频的交流电信号。

2、信号频谱包含两种或更多的被关注的频率成分的电信号。

变频电量包括电压、电流以及电压电流引出的有功功率、无功功率、视在功率、有功电能、无功电能等。

除了变频器输出的PWM波,二极管整流的变频器输入的电流波形,直流斩波器输出的电压波形,变压器空载的输入电流波形等,均含有较大的谐波,右图中为常见变频电量的波形及相关频谱图。

由于变频电量的频率成分复杂,变频功率计的测量一般包括基波有功功率(简称基波功率)、谐波有功功率(简称谐波功率)、总有功功率等,相比工频功率计而言,其功能较多,技术较复杂,一般称为变频功率分析仪或宽频功率分析仪,部分高精度功率分析仪也适用于变频电量测量。

变频功率分析仪可以作为工频功率分析仪使用,除此之外,一般还需满足下述要求:

1、满足必要的带宽要求,并且采样频率应高于仪器带宽的两倍。

2、要求分析仪在较宽的频率范围之内,精度均能满足一定的要求。

3、具备傅里叶变换功能,可以分离信号的基波和谐波。

射频或微波功率计按照在测试系统中的连接方式不同分类

终端式通过式两种。终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。通过式功率计利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。

射频或微波功率计按的测量原理分类

测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。

热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。

量热式功率计典型的热效应功率计,利用隔热负载吸收高频信号功率,使负载的温度升高,再利用热电偶元件测量负载的温度变化量,根据产生的热量计算高频功率值。

晶体检波式功率计晶体二极管检波器将高频信号变换为低频或直流电信号。适当选择工作点,使检波器输出信号的幅度正比于高频信号的功率。

射频或微波功率计按被测信号连续性分类

有连续波功率计和脉冲峰值功率计。

功率表技术指标

功率表变频

变频功率分析仪(3张)以下是变频功率分析仪的典型技术指标

带宽:50kHz~100kHz;

采样频率:大于带宽的2倍;

电压、电流准确级:0.02级、0.05级、0.1级、0.2级、0.5级;

功率准确级:0.05级、0.1级、0.2级、0.5级、1级;

准确级适用基波频率范围:DC,0.1Hz~400Hz;

准确级适用电压范围:0.75%Un~150%Un;

准确级适用电流范围:1%In~200%In;

准确级适用功率因数范围:0.05~1。

功率表射频

以下是射频功率计的典型技术指标

功率范围

保证测量精度的可测功率值的范围。功率计的功率范围决定于功率探头。

最大允许功率

探头不被损坏的最大输入功率值,通常指平均功率。在测量大功率峰值信号时,注意峰值电压和峰值功率不能超过一定值,否则会造成功率探头烧毁。

频率范围

能保证测量精度和性能指标的被测信号的频率范围。

测量精度

指功率探头校准修正后的精度。不包括测试系统的失配误差。

稳定性

功率计的稳定性取决于功率探头的稳定性和指示器的零漂及噪声干扰。

响应时间

也称功率传感元件的时间常数。通常指功率指示器上升到稳定值的64%所需的时间。

探头的型号、阻抗

选用功率计探头时,功率探头的使用频率、功率范围必须与被测信号一致,探头传输线的结构和阻抗应与被测传输线相互匹配。

功率表应用

功率表光功率测量

用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。

功率表电气产品检试验

变频功率分析仪适用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。

变频功率计的应用(7张)

功率表注意事项

功率表量程选择

选择功率表的量程就是选择功率表中的电流量程和电压量程。使用时应使功率表中的电流量程不小于负载电流,电压量程不低于负载电压,而不能仅从功率量程来考虑。例如,两只功率表,量程分别是IA、300V和2A、150V,由计算可知其功率量程均为300W,如果要测量一负载电压为220V、电流为IA的负载功率时应逸用IA、300V的功率表,而2A、150V的功率表虽功率量程也大于负载功率,但是由于负载电压高于功率表所能承受的电压150V,故不能使用。所以,在测量功率前要根据负载的额定电压和额定电流来选择功率表的量程。

功率表测量线路

电动系测量机构的转动力矩方向和两线圈中的电流方向有关,为了防止电动系功率表的指针反偏,接线时功率表电流线圈标有“·”号的端钮必须接到电源的正极端,而电流线圈的另一端则与负载相连,电流线圈以串联形式接入电路中。功率表电压线圈标有“·”号的端钮可以接到电源端钮的任一端上,而另一电压端钮则跨接到负载的另一端,。

当负载电阻远远大于电流线圈的电阻时,应采用电压线圈前接法。这时电压线圈的电压是负载电压和电流线圈电压之和,功率表测量的是负载功率和电流线圈功率之和。如果负载电阻远远大于电流线圈的电阻,则可以略去电流线圈分压所造成的影响,测量结果比较接近负载的实际功率值。

当负载电阻远远小于电压线圈电阻时,应采用电压线圈后接法 。这时电压线圈两端的电压虽然等于负载电压,但电流线圈中的电流却等于负载电流与功率表电压线圈中的电流之和,测量时功率读数为负载功率与电压线圈功率之和。由于此时负载电阻远小于电压线圈电阻,所以电压线圈分流作用大大减小,其对测量结果的影响也可以大为减小。

如界被测负载本身功率较大,可以不考虑功率表本身的功率对测量结果的影响,则两种接法可以任意选择。但最好选用电压线圈前接法,因为功率表中电流线圈的功率一般都小于电压线圈支路的功率。

功率表正确读数

一般安装式功率表为直读单量程式,表上的示数即为功率数。但便携式功率表一般为多量程式,在表的标度尺上不直接标注示数,只标注分格。在选用不同的电流与电压量程时,每一分格都可以表示不同的功率数。在读数时,应先根据所选的电压量程U、电流量程I以及标度尺满量程时的格数&,求出每格瓦数(又称功率表常数)C,然后再乘上指针偏转的格数夕,就可得到所测功率P

例题

例:有一只电压量程为250V,电流量程为3A,标度尺分格数为75的功率表,现用它来测量负载的功率。

当指针偏转50格时负载功率为多少?

解:先计算功率表常数C

C=UI/a,=250V×3A/75格=10W/格

故被测功率为

P=C色=10W/格×50格=500W

总有机碳分析仪基本意义

TOC表示污水中总有机碳的含量,也是表征水体受有机物污染程度的一个指标用TOC、TOD法所测定的理论值准确度高,是对水质各指标测定中不可缺少的方法

总有机碳分析仪原理方法

下面针对TOC仪器的测定原理、TOC分析方法及分析的步骤进行介绍。

总有机碳分析仪测定原理

总有机碳(TOC),由专门的仪器——总有机碳分析仪(以下简称TOC分析仪)来测定。TOC分析仪,是将水溶液中的总有机碳氧化为二氧化碳,并且测定其含量。利用二氧化碳与总有机碳之间碳含量的对应关系,从而对水溶液中总有机碳进行定量测定。

市面上常见的TOC分析仪都有两大基本功能:第一,首先将水中的总有机碳充分氧化,生成二氧化碳CO2;第二,测试新产生的CO2.不同品牌和型号的TOC分析仪的区别在于实现这两大基本功能的方法不同。常用的氧化技术有:燃烧氧化法、紫外线氧化法以及超临界氧化法;而对CO2的检测方法又分:非分散红外线检测,直接电导率检测以及选择性薄膜电导率检测。

总有机碳分析仪紫外线氧化法

使用UV灯照射待测水样,水会分解成羟基和氢基,羟基和氧化物结合会生成CO2和水,然后检测新生成的CO2即可计算出总有机碳含量。在使用紫外线氧化法时,通过添加二氧化钛,过硫酸盐等可以提高氧化能力。紫外线氧化法的优点是氧化效率高,保养简单,缺点是UV灯管需要定期更换。

总有机碳分析仪燃烧氧化法

其中燃烧氧化—非分散红外吸收法优势是只需一次性转化,流程简单、重现性好、灵敏度高,缺点是探测器需频繁校准,体积大及预热时间长,必须使用酸、催化剂和载气。

TOC分析仪主要由以下几个部分构成:进样口、无机碳反应器、有机碳氧化反应(或是总碳氧化反应器)、气液分离器、非分光红外CO2分析器、数据处理部分。

燃烧氧化—非分散红外吸收法,按测定TOC值的不同原理又可分为差减法和直接法两种。

⒈差减法测定TOC值的方法原理

水样分别被注入高温燃烧管(900℃)和低温反应管(150℃)中。经高温燃烧管的水样受高温催化氧化,使有机化合物和无机碳酸盐均转化成为二氧化碳。经反应管的水样受酸化而使无机碳酸盐分解成为二氧化碳,其所生成的二氧化碳依次导入非分散红外检测器,从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。

⒉直接法测定TOC值的方法原理

将水样酸化后曝气,使各种碳酸盐分解生成二氧化碳而驱除后,再注入高温燃烧管中,可直接测定总有机碳。但由于在曝气过程中会造成水样中挥发性有机物的损失而产生测定误差,因此其测定结果只是不可吹出的有机碳值。

总有机碳分析仪超临界水氧化法

超零界水氧化(Supercritical Water Oxidation — SCWO)技术原先被用于处理大体积废水、污泥和被污染超临界氧化法

过的土壤。GE是首家将这种技术运用于商业实验室TOC分析仪的公司,当温度和压力高于水的临界点(375°C和3,200psi)时,有机废物迅速被水中的氧化剂彻底氧化。超临界水的特性均可以使有机碳极高效、快速地氧化为二氧化碳,即便存在使用非超临界氧化方式时会造成负干扰的氯化物及其他无机物也无妨。而且使用SCWO技术的TOC分析仪对维护和校准的要求也不高。超临界水氧化法的优点在于氧化完全迅速,可以耐受高盐份化合物;缺点是不能检测低TOC浓度的水样。

总有机碳分析仪电导率检测法

TOC电导率检测技术能够测量液态的CO2。业界采用薄膜电导率检测法

的主要有两种电导率检测技术:一种是直接电导率法,另外一种是薄膜电导率检测法(又称选择性电导率法)。采用两种电导率法的TOC分析仪校验结果都很稳定,检测精度高。这两种技术最主要的区别在于,直接电导率法比较容易受杂酸性,卤化有机物等的干扰;而薄膜电导率检测技术抗干扰性更佳。

薄膜电导率检测法是GE TOC分析仪使用较多的检测方法,TOC分析仪使用的膜能防止杂离子的通过,确保检测的只是CO2的含量,从而使TOC的读数更为精确。

总有机碳分析仪TOC分析步骤

⒈试剂准备

⑴邻苯二甲酸氢钾(KHC8H4O4):基准试剂

⑵无水碳酸钠:基准试剂

⑶碳酸氢钠:基准试剂

⑷无二氧化碳蒸馏水

⒉标准贮备液的制备

⑴ 有机碳标准贮备液:称取干燥后的适量KHC8H4O4,用水稀释,一般贮备液的浓度为400mg/L碳。

⑵ 无机碳标准贮备液:称取干燥后适量比例的碳酸钠和碳酸氢钠,用水稀释,一般贮备液的浓度为400mg/L无机碳。

⒊有机碳、无机碳标准溶液的配制

从各自的贮备液中按要求稀释得来。

⒋校准曲线的绘制

由标准溶液逐级稀释成不同浓度的有机碳、无机碳标准系列溶液,分别注入燃烧管和反应管,测量记录仪上的吸收峰高,与对应的浓度作图,绘制校准曲线。

⒌水样测定

取适量水样注入TOC仪器进行测定,所得峰高从标准曲线上可读出相应的浓度,或由仪器自动计算出结果。

⒍ 计算

差减法:总有机碳(mg/L)=总碳-无机碳

直接法:总有机碳(mg/L)=总碳

总有机碳基本信息

总有机碳(Total Organic Carbon, TOC)是水中有机物所含碳的总量,所以能完全反映有机物对水体的污染程度。化学需氧量(COD)、生化需氧量(BOD)是间接测定水中有机物的方法,一切有机物都是以有机碳组成,水中有机物在氧化时释放出的碳与氧结合生成CO2,测定生成的CO2是直接测定有机物的方法,因此TOC是直接测量水中有机污染物较好的方法。它是比COD和BOD5更能确切表示水中有机污染物的综合指标。

TOC 分析已成为世界许多国家水处理和质量控制的主要手段。另外 , 在饮用水供给、制药、食品、半导体工业、废物腐殖质化程度分析、水生系统的碳通量分析、土壤碳含量的测定、以及土壤的碳循环中都需要进行 TOC 的测定。[1]

总有机碳测定方法

目前,水中TOC的监测都使用仪器法进行测定。如采用直接燃烧氧化-非分散红外法和K2S2O8氧化-非分散红外法的总有机碳监测仪等。自1962年开发了有机物燃烧氧化分解后用非分散红外气体分析仪连续测定方法以来,TOC 分析仪得到飞跃发展,它能在高温催化氧化的状态下或K2S2O8存在的条件下氧化分解所有有机物。高温催化氧化方法的氧化温度一般在980℃。这一方法已列入许多国家的标准方法中,如美国在1967年就在ASTM试验法(美国材料试验协会)D-2579中法定采用,美国EPA9096方法规定用燃烧—非分散红外法(NDIR)测定水中TOC,现在美国测定水中有机物综合指标的测定仪器主要以TOC为主;日本是在1970年开始讨论TOC方法,1971年新修改的JIS方法中就作为参考方法列入JIS K0101中;我国也在1991年正式将本方法作为地表水和饮用水中TOC 测定的国标方法。

TOC的测定方法中的氧化方式有燃烧氧化法和湿式氧化法,产生的CO2气体检测方法有NDIR、电导法和FID 法等。由于燃烧—非分散红外法不适用测定含高盐量的海水、测定方法灵敏度较低和仪器较昂贵,所以湿式氧化法测定总有机碳成为基体复杂水样中TOC的有效测定方法,如过硫酸钾紫外氧化- 非分散红外法、二氧化钛- 电导率法等。

更具体来说,测定TOC 时使用的氧化有机污染物的方法有三种,即:加热氧化、紫外照射-过硫酸盐氧化和OH自由基氧化。目前实验室用TOC测定仪和自动在线TOC 监测仪都有使用这三种氧化方法的仪器,虽然三种氧化方法的仪器设计、类型及氧化特性等不同,但必须能使待测水样中的有机污染物全部转变成CO2,通过测量生成的CO2量计算水样中的TOC浓度。

加热氧化法

①加热氧化方法是在高温下燃烧水样中的有机物,使其转化为CO2,如果温度控制合适,且催化剂效果良好时,这种方法是三种氧化方法中氧化效率最高的方法。

②在小型燃烧炉中加入少量待测水样,加热至600~980℃以铂金属作催化剂使有机污染物氧化,在瞬时燃烧使有机物完全氧化。

③由于允许进样量仅为0.1ml,为了使测量的水样具有代表性,在进样前将水样均匀化并且通过滤膜过滤后测定,这是对测量结果影响最大的因素。然而,在环境监测中使用存在着测定数据的代表性问题。

④这种方法非常适合于实验室用TOC测定仪,而用这种方法氧化设计的TOC自动在线监测仪,必须在现场用标准TOC样品反复标定,且水样前处理装置也较为复杂,难以自动在线清洗。由于HJ/T91-2002规定排放污水必须测定含悬浮物的原始水样,仪器的日常维护和管理也十分重要。

UV/ 过硫酸盐氧化

1) 在UV/ 过硫酸盐氧化法中,是向水样中加入K2S2O8并混合均匀后,用紫外光(UV)照射,这种方法水样中大的颗粒物不能被完全氧化,其氧化效率受水样中有机污染物的形态影响。

2) UV光照射能放出少量O3,由于其量甚微,对水样的氧化实际起不到明显作用。

3) 经简化后的这种氧化方法氧化效率有所提高,但其可变因素应是研究和开发新仪器的重点,以这种氧化方法为原理的仪器,无论实验室用还是自动在线监测用TOC测定仪,对使用人员的技术水平和熟练程度都要求较高。以这种方法氧化的TOC测定仪由于其价廉,很受用户欢迎,是目前使用率和普及率最高的TOC测定仪。

OH 自由基氧化

1) Bio Tector作为具有氧化性的试剂,用其OH自由基的氧化能力开发出新的TOC监测仪,在pH较高的情况下,O3浓度较高时则生成OH,由于OH不稳定,且腐蚀性较强,但能有效地氧化水中的有机污染物。

2) 在O3和NaOH存在时,在反应室内生成的OH氧化剂可氧化较大量水样中的有机污染物,因此TOC测量结果不受水样中悬浮物及颗粒物的影响,水样不经过滤可直接测定。

3) 该方法适合于TOC自动在线监测仪,但对流路系统要求较高。

TOC的测定有水样原样测定的差减法和采用前处理除去水样中IC后测定的直接法两种方法。前一种方法适用于测定IC比TOC低的水样。后一种方法适用于测定IC含量高的水样,但这种方法将会有挥发性有机物的损失。TC 测定方法有燃烧氧化法和湿式氧化法。IC的测定方法为酸化法。IC的处理方法采用酸化曝气处理法。将水样酸化至pH<3,CO32-和HCO3-转化成碳酸,再通过曝气去除CO2。[2]

总有机碳应用

TOC 在环境监测中的应用

地表水中 TOC 的监测方法

我国已有测定地表水中TOC的国标方法GB 13193-91,采用的燃烧氧化- 非分散红外法,测定浓度范围为0.5~60mg/L,检测下限为0.5mg/L。当水样中常见共存离子超过SO42-400mg/L,Cl-400mg/L,PO43-100mg/L,硫化物100mg/L时,对测定有干扰,应作适当处理后再进行分析测定。

污水中 TOC 的监测分析方法

目前我国污水中TOC的标准测定方法正在制定当中,也拟采用燃烧氧化- 非分散红外法或湿式氧化- 非分散红外法。燃烧氧化法的最低检测限为1.0mg/L。进样量过小会影响重现性和降低方法灵敏度,但进样量又不能太多,否则将影响气化效率。通常测试几个mg/L时,进样量以30~50微升为宜;测试在几十个mg/L以上时,进样量可在10~30 微升范围内选择。由于废水中TOC 含量较高,对于不同污水样品,在测定过程中要适当加以稀释,使其测定值在标准曲线的线性范围内,从而保证测定值的准确,而湿式氧化法则不存在这些问题。另外,对含悬浮物较多水样也应对样品稀释后进样。水样中含有大颗粒悬浮物时,受水样注射器针孔限制,测定结果往往不包括全部颗粒态有机碳。

IC对TOC测定的影响:在样品中无机碳含量较高的时候,如果仍用TC减去IC的方法来计算TOC,会给TOC值带来很大的误差,干扰TOC的测定。在这种情况下,应预先对样品进行前处理。实验结果表明,当IC 浓度为TOC浓度的二倍时,其测量误差超过30%。盐类对TC测定的影响:取不同浓度NaCl溶液与TC溶液混合,进行测定。实验结果表明,当NaCl的浓度为TC浓度1000倍时,NaCl对TC测定影响仍较小。而且,测定过程中所得峰形正常,基线平直,无拖尾、基线漂移等现象。

污水中 COD 排放总量的监测

在污水排放总量控制的指标中,有机污染物总量控制指标为化学需氧量(COD)。由于不同类型的水中(特别是一些污水)存在不被COD所反映的的有机物,如一些挥发性化合物、环状或多环芳烃污染物,致使COD指标不能完全反映水体的有机污染状况。而总有机碳(TOC)指标因为采用燃烧氧化—非分散红外法测定,对有机物的氧化比较完全,氧化率在80% 以上。所以,TOC指标更能反映水体的有机污染程度。因此,国外许多国家将TOC在线自动监测仪置于工厂总排污口,随时监测污水的排污情况。

TOC 的排放标准限值

国外许多国家将TOC在线自动监测仪置于工厂总排污口,随时监测废水的排污情况,有些国家已制定了TOC 的排放标准。我国修订的“污水综合排放标准(GB8978-1996)”中已列入TOC控制指标。[2]

总有机碳分析仪

国内外已研制生产有包括实现连续在线监测的各种类型的 TOC 分析仪。按工作原理不同 , 可分为燃烧氧化2NDIR 法 ; 加热2过硫酸盐氧化2NDIR法 ; UV 光催化2过硫酸盐氧化2NDIR 法、离子选择电极 ( ISE) 法、电导法、气相色谱法等。其中 , 燃烧氧化2NDIR 法只需一次性转化 , 流程简单 , 为国内外广泛采用。

国内常见的 TOC 测定仪 , 如 TOC210B、TOC2500、TOC25000、TOC2V 系列、TOC24100 是日本岛津 不 同 时 期 的 产 品 ; 12702M、1555B、6800、6810 是美国 ION ICS 公司不同时期的产品。比较国外几种 TOC 分析仪的性能特点可知 , 日本早期的 TOC 测定仪水平低于美国 , 经过不断努力和创新 , 其水平与美国的同类产品相当 , 各有特点。例如 , 岛津制作所的 TOC2VCPH 有稀释功能 , 美国Star Instruments Inc 的 100 型 TOC 测定仪有臭氧法、超纯紫外法、紫外 + 过硫酸盐法、900 ℃+ 铂催化高温氧化法四种氧化方法可选择。ThermoElectron Corporation (N YSE : TMO) 在荷兰的代夫特工厂于 2003 年 10 月推出的台式高性能 TOC分析仪 HiPer TOC 也具有 4 种不同的氧化技术 : 高温氧 化 , UV2过 硫 酸 盐 , 超 纯 UV , UV2臭 氧。HiPer TOC 的一体化 55 位三维自动进样器提高了分析效率 , 两个 NDIR 在一次分析里得到高、低不同浓度的 TOC 结果。国外最新研制的 TOC 测定仪仍有低档机 , 如岛津制作所的 TOC2V E、美国ION ICS 公司的 1555B。1555B 只用一个模拟温控器控制 900 ℃的 TC 氧化炉温度 , IC 反应炉只靠TC 氧化炉的 900 ℃炉温传热 , 结构更简单 , 它们都采用微量注射器手动进样。

目前 , 世界上 TOC 分析仪的氧化技术以高温氧化为主。但是 , 在美国 USP643 中也明确规定了加热2过硫酸氧化法、紫外线2过硫酸氧化法。紫外线氧化法 , 在日本药局已获得认证并已在日本广泛地应用 , 但欧美等国的行政主管部门并未获得认可。[1]

总有机碳(TOC)测定仪产品介绍

还具备在线实时监测功能,可以根据客户需要选取最短10秒的分析间隔时间,最快5分钟的离线检测时间。历史数据以图形显示,对检测水样的有机碳值和电导率值的变化情况更加直观。

总有机碳TOC分析仪技术参数

精 确 度: <1 % RSD

正 确 度: + 2% ( + 0.5ppb ),高灵敏, 擅长检测低TOC的水样.总有机碳TOC分析仪

采样模式: 可选择个别采样以及实验室自动采样.

读取数据: 3位有效数字.

校准稳定性: 一次校准稳定一年.

检测时间: 4分钟

环境温度: 10 - 40°C

样品温度: 1 - 95°C

仪器内流速: 0.5 ml / min .

输 出: RS232,USB, PRINTER.

显 示: 彩色触摸显示屏,设置简单.

电 源: 100–240 +10%VAC,50W,50/60Hz .

安全证明: UL/cUL,CE

易操作性: 彩色触摸显示屏,自动设定试剂流速.

低维护费: 更换试剂、紫外灯、泵管都简便易行.

水中总有机碳分析仪基本信息

水中总有机碳分析仪M294279是独立研制的专利产品,它可以测定纯水水样中的总有机碳(TOC),总无机碳(TIC)和总碳(TC)(TC=TOC+TIC)的浓度。 分析仪的测定是基于有机成分在紫外线的作用下被氧化成二氧化碳。二氧化碳的测定采用了电导率检测技术。测定时,要通过测定无机碳含量,和有机成分经氧化后得到的样品总碳含量。总碳含量与总无机碳含量之间的差值:TOC = TC ? TIC

水中总有机碳分析仪技术参数

1. 电 源:AC220V±22V

2. 电源频率:50Hz±1hz

3. 额定功率:100W

4. 基本尺寸:44CM×18CM×26CM

5. 检测极限:0.001mg/L

6. 检测精度:±5%

7. 检测范围:0.001mg/L~1.000mg/L

8. 分析时间:4min

9. 响应时间:15 min以内 within15min

10. 样品温度:1-95℃

11. 内部样品流速:0.5ml/min

12. 相对湿度:≤85%

13. 重复性误差:≤3%

14. 零点漂移:±5%

15. 量程漂移:±5%

16. 直 线 性:±5%

水中总有机碳分析仪特点

1. 消耗最低:不需要酸试剂、氧化剂、任何气体、日常维护费。只需维护的组件是紫外灯和泵管。

2. 操作简单、快捷、可靠开机按一键即可运行使用者无需专业知识和专门培训。

3. 专业针对高纯水TOC检测而设计,可实现在线监测。

4. 超大的存储器能自动存储最近12个月连续检测的数据,能查询任意一天的记录,能打印检测结果并能向上位机传递5据。

5. 检测速度快,检测一个结果只需4分钟,管路冲洗时间短,长时间不用后重新使用只需冲洗管路3小时。

6. 体积小、重量轻、耗能少、携带方便。仅重10KG。体积为:440mm*180mm*260mm。待机总功率只有40W。

7. 具有自动的上限报警输出。超出设定的监测结果时可以提醒操作者。

8. 易于按照美国药典26<643>和欧洲药典2.2.44以及中国药典所要求的TOC方法进行系统适应性测试。

9. 超大的320*234的点阵真彩显示器以及人性化的

见面。

10. 具有RS232数据接口和微型打印机接口。

TOC分析仪简介

总有机碳(Total Organic Carbon,简称TOC)

TOC分析仪即总有机碳分析仪。

以碳的含量表示水体中有机物质总量的综合指标。

TOC可以很直接地用来表示有机物的总量。因而它被作为评价水体中有机物污染程度的一项重要参考指标。

TOC分析仪TOC原理

基本原理是:先把水中有机物的碳氧化成二氧化碳,消除干扰因素后由二氧化碳检测器测定,

再由数据处理把二氧化碳气体含量转换成水中有机物的浓度。经过不断的研究实验,TOC

检测方法从传统的复杂技术渐渐变成便捷准确。

TOC分析仪TOC检测方法

一、湿法氧化(过硫酸盐)- 非色散红外探测 (NDIR)实验室型TOC及自动取样器

该方法是在氧化之前经磷酸处理待测样品 ,去除无机碳,而后测量 TOC的浓度。现代的TOC

连续分析仪中,绝大部分都是湿法氧化。湿法氧化对于复杂的水体(例如:腐殖酸、高分子量

化合物等)氧化不充分,所以不适用 TOC含量高的水体 ,但是对于常规水体如地表水是可以

的。

二、高温催化燃烧氧化 - 非色散红外探测(NDIR)

高温催化燃烧氧化的应用时间远比湿法氧化迟,但是因为高温燃烧相对彻底,可以适用于污

染较重的江河、海水以及工业废水等水体。

三、紫外氧化 - 非色散红外探测 (NDIR)

其方式与湿法氧化相同,不过是采用紫外光(185nm)进行照射的原理,在样品进入紫外反应器

之前去除无机碳,得到更精确的结果。紫外氧化法,对于颗粒状有机物、药物、蛋白质等高

含量 TOC是不适用的,但可以用于原水、工业用水等水体。

四、紫外(UV)- 湿法(过硫酸盐)氧化 - 非色散红外探测(NDIR)

这种方式是紫外氧化和湿法氧化两者协同作用,相互补充,相互促进,氧化降解效果优于其中

任何一种方法。针对紫外氧化无法用于高含量TOC水体,两者的协同可以测量污染较重的

水体。因其适用性强、可测范围广泛的特点而普及度高,技术成熟。

五、电阻法

该法是近年来开始应用的技术 ,其原理是在温度补偿前提下,测量样品在紫外线氧化前后电

阻率的差值来实现的。但该方法对被测量的水体来源要求比较苛刻 ,只能用相对洁净的工业

用水和纯水 ,应用方向单一。

六、紫外法

紫外吸收光谱用于 TOC的检测分析最早可追溯到 1972 年 ,Dobbs 等人对于 254nm处紫

外吸光度值(A)和城市污水处理二级出水及河水的 TOC之间线性关系进行了研究。经过几

十年的发展, 由于具有快速、不接触测量、重复性好、维护量少等优点,该方法的应用得到

飞速发展。

七、电导法

该法中涉及的主要器件是电导池,它由参比电极、测量电极、气液分离器、离子交换树脂、

反应盘管、NaOH电导液等组成。电导池的优点是价格低、易普及 ,但稳定性较差。

八、臭氧氧化法

利用臭氧的强氧化性,采用臭氧氧化作为TOC的检测技术,具有反应速度快,无二次污染 ,

以及较高的应用价值。故此方法的应用前景非常可观。

九、超声空化声致发光法

超声化学已成为一个蓬勃发展的研究领域 ,声致发光的研究已涉及到环境保护领域 ,我国的

相关学者在基础研究和应用研究方面做了大量的工作 ,近年来 ,这一独特的方法已经得到专

家的认可。具有无二次污染、不需添加试剂 ,设备简单等优点。

十、超临界水氧化法

适用于盐分高的应用,超零界水氧化(Supercritical Water Oxidation — SCWO)技术原先被用于处理大体积废水、污泥和被污染过的土壤。现被运用于商业实验室TOC分析仪,将进样水的温度和压力提升至高于水的临界点(375°C和3,200psi)时,有机废物迅速被水中的氧化剂彻底氧化。超临界水的特性均可以使有机碳极高效、快速地氧化为二氧化碳,即便存在使用非超临界氧化方式时会造成负干扰的氯化物及其他无机物也无妨。

技术参数:

测量范围:0—100,000ppm C(非稀释状态) ,0----5,000ppm N 。

自动进样,一次进样得6个结果:TOC/TIC/TC/NPOC/POC/TNb 。

可选全自动多孔位进样器、总氮(TNb)分析模块、固体分析模块。 测定误差与精度 ≤1%。

应用:

满足医用注射水检测。

清洁验证(符合FDA/USP/EP)。 饮用水、地表水、自来水、排水、污水

环保、水文监测等不同行业。

红外分析仪主要配置

a) 高频燃烧红外分析一体化机 一台 (北京万联达公司生产)

b) 电子天平一台 (德国塞多利斯)

c) 计算机 一台 (戴尔)

d) 打印机 一台 (惠普)

红外分析仪主要性能

l 进口气动元件:插接简便﹑质量可靠

l 炉头环形加热装置:气路控制系统简洁﹑漏率低

l 感应线圈:特殊处理,效率高、无锈蚀

l过滤器:超微孔(0.5微米)﹑无需定期超声清洗

l 汽缸:采用无油技术,自动升降,适合各种各种恶劣现场的快速分析要求

l 高压过载:短路自动保护、自动切断

l 高压系统:采用高可靠控制电路、加压时间可控,延长了功率管寿命

b) 红外分析装置:

l液晶显示屏:全中文显示、键盘操作

l 特制碳、硫及一氧化碳吸收池

l 一体化组件:光锥-滤光片-红外探测器-放大器

l 正压气体保护﹑抑制背景干扰、检测信号稳定可靠

l电路设计:高集成度、故障率低、维修简便

l电子气体稳流器:精度高,不受温度﹑压力的影响

l 开关/线性电源:多级滤波、抗干扰性强

c) 电子天平

l 德国塞多利斯,万分之一精度

l 自动天平接口

d) 电子计算机:

l 美国戴尔计算机

l CPU:≥2.4G

l 内存:256MB

l 显示器:15英寸液晶

l硬盘驱动器:40GB

l 操作系统:WINDOWS XP正版

l 软件: CS-901B型软件

l CD-ROM:48倍速

l集成网卡

l 免费上门服务

e) 分析指标:

l 分析范围:C1:0.0001-0.1% C2:0.01—99.9%

S:0.0001-10.0%

l 分析时间:15-55秒

l 分析精度:分析误差优于国标JJG395-97规定的允许差

C:RSD≤0.4% S:RSD≤1.0%

f) 数据处理系统:

l 最新多媒体配置﹑高速度﹑大容量可脱机使用

l计算机与单片机两套操作系统任意选择

l 数据远传:可选用串口或网卡向局域网、上位计算机、现场大屏幕等输出分析结果。

l Windows下全中文界面,实时显示多条释放曲线和分析结果﹑多层次的线性校正和误差修正,大容量数据储存﹑电子天平自动量程切换及重量补偿﹑计算数据并生成报表,打印机打印分析结果及曲线。

g) 主要特点:

l 双套操作系统

n 计算机﹑单片机两套

n 打印装置为两套

l双碳、单硫、一氧化碳共4组红外吸收装置,碳20个独立分析通道,硫共10个独立分析通道。

l 数据处理具有一氧化碳、温度、压力、流量和峰宽五大补偿功能。

红外光谱仪理论

电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-1)可以激发泛音和谐波震动。红外光谱法的工作原理是由于震动能级不同,化学键具有不同的频率。共振频率或者振动频率取决于分子等势面的形状、原子质量、和最终的相关振动耦合。为使分子的振动模式在红外活跃,必须存在永久双极子的改变。具体的,在波恩-奥本海默和谐振子近似中,例如,当对应于电子基态的分子哈密顿量能被分子几何结构的平衡态附近的谐振子近似时,分子电子能量基态的势面决定的固有振荡模,决定了共振频率。然而,共振频率经过一次近似后同键的强度和键两头的原子质量联系起来。这样,振动频率可以和特定的键型联系起来。简单的双原子分子只有一种键,那就是伸缩。更复杂的分子可能会有许多键,并且振动可能会共轭出现,导致某种特征频率的红外吸收可以和化学组联系起来。常在有机化合物中发现的CH2组,可以以 “对称和非对称伸缩”、“剪刀式摆动”、“左右摇摆”、“上下摇摆”和“扭摆”六种方式振动。

红外光谱仪原理

傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入红外光谱仪原理图

到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。

红外光谱仪分类

一般分为两类,一种是光栅扫描的,很少使用;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前最广泛使用的。 光栅扫描的是利用分光镜将检测光(红外光)分成两束,一束作为参考光,一束作为探测光照射样品,再利用光栅和单色仪将红外光的波长分开,扫描并检测逐个波长的强度,最后整合成一张谱图。 傅立叶变换红外光谱是利用迈克尔逊干涉仪将检测光(红外光)分成两束,在动镜和定镜上反射回分束器上,这两束光是宽带的相干光,会发生干涉。相干的红外光照射到样品上,经检测器采集,获得含有样品信息的红外干涉图数据,经过计算机对数据进行傅立叶变换后,得到样品的红外光谱图。傅立叶变换红外光谱具有扫描速率快,分辨率高,稳定的可重复性等特点,被广泛使用。[1]

红外光谱仪应用

应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。

红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。

由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。

分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。

人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。

当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与显微镜方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。

使用红外光谱仪对材料进行定性分析,广泛应用于各大、专院校,科研院所及厂矿企业。常见具备红外光谱仪检测能力的机构有:四川大学、西南交通大学、中蓝晨光化工研究院、华通特种工程塑料研究中心等。

进行化合物的鉴定 进行未知化合物的结构分析

进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究

工业流程与大气污染的连续检测

在煤炭行业对游离二氧化硅的监测

卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测

水晶石英羟基的测量 聚合物的成分分析 药物分析......

红外光谱仪特点

1、 只需三个分束器即可覆盖从紫外到远红外的区段;

2、 专利干涉仪,连续动态调整,稳定性极高;

3、 可实现LC/FTIR、TGA/FTIR、GC/FTIR等技术联用;

4、 智能附件即插即用,自动识别,仪器参数自动调整;

5、 光学台一体化设计,主部件对针定位,无需调整。

红外光谱仪应用领域

进行化合物的鉴定 进行未知化合物的结构分析

进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究

工业流程与大气污染的连续检测

在煤炭行业对游离二氧化硅的监测

卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测

水晶石英羟基的测量 聚合物的成分分析 药物分析......

红外光谱技术背景

在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。

20世纪60年代,随着Norris等人所做的大量工作,提出物质的含量与近红外区内多个不同的波长点吸收峰呈线性关系的理论,并利用近红外漫反射技术测定了农产品中的水分、蛋白、脂肪等成分,才使得近红外光谱技术一度在农副产品分析中得到广泛应用。60年代中后期,随着各种新的分析技术的出现,加之经典近红外光谱分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,此后,近红外光谱再次进入了一个沉默的时期。

70年代产生的化学计量学(Chemometrics)学科的重要组成部分--多元校正技术在光谱分析中的成功应用,促进了近红外光谱技术的推广。到80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之近红外光谱在测样技术上所独占的特点,使人们重新熟悉了近红外光谱的价值,近红外光谱在各领域中的应用研究陆续展开。进入90年代,近红外光谱在产业领域中的应用全面展开,有关近红外光谱的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使近红外光谱在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此近红外光谱技术进入一个快速发展的新时期。

近红外光是一种介于可见光(VIS)和中红外光(IR)之间的电磁波,美国材料检测协会(ASTM),将其定义为波长780~2526nm的光谱区。利用近红外光谱的优点有:1.简单方便,有不同的测样器件可直接测定液体、固体、半固体和胶状体等样品,检测成本低。2.分析速度快,一般样品可在1min内完成。3.适用于近红外分析的光导纤维易得到,故易实现在线分析及监测,极适合于生产过程和恶劣环境下的样品分析。4.不损伤样品可称为无损检测。5.分辨率高可同时对样品多个组分进行定性和定量分析等。所以目前近红外技术在食品产业等领域应用较广泛。

这种技术专门用在共价键的分析。如果样品的红外活跃键少、纯度高,得到的光谱会相当清晰,效果好。更加复杂的分子结构会导致更多的键吸收,从而得到复杂的光谱。但是,这项技术还是用在了非常复杂的混合物的定性研究当中。

红外光谱原理

当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外红外光谱

光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。

当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。

红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。

分子的振动形式可以分为两大类:伸缩振动和弯曲振动。前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。后者是指原子垂直于化学键方向的振动。通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。弯曲振动可分为面内弯曲振动(δ)和面外弯曲振动(γ)。从理论上来说,每一个基本振动都能吸收与其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率相同,发生简并;还有一些振动频率超出了仪器可以检测的范围,这些都使得实际红外谱图中的吸收峰数目大大低于理论值。

组成分子的各种基团都有自己特定的红外特征吸收峰。不同化合物中,同一种官能团的吸收振动总是出现在一个窄的波数范围内,但它不是出现在一个固定波数上,具体出现在哪一波数,与基团在分子中所处的环境有关。引起基团频率位移的因素是多方面的,其中外部因素主要是分子所处的物理状态和化学环境,如温度效应和溶剂效应等。对于导致基团频率位移的内部因素,迄今已知的有分子中取代基的电红外光谱仪

性效应:如诱导效应、共轭效应、中介效应、偶极场效应等;机械效应:如质量效应、张力引起的键角效应、振动之间的耦合效应等。这些问题虽然已有不少研究报道,并有较为系统的论述,但是,若想按照某种效应的结果来定量地预测有关基团频率位移的方向和大小,却往往难以做到,因为这些效应大都不是单一出现的。这样,在进行不同分子间的比较时就很困难。

另外氢键效应和配位效应也会导致基团频率位移,如果发生在分子间,则属于外部因素,若发生在分子内,则属于分子内部因素。

红外谱带的强度是一个振动跃迁概率的量度,而跃迁概率与分子振动时偶极矩的变化大小有关,偶极矩变化愈大,谱带强度愈大。偶极矩的变化与基团本身固有的偶极矩有关,故基团极性越强,振动时偶极矩变化越大,吸收谱带越强;分子的对称性越高,振动时偶极矩变化越小,吸收谱带越弱。

红外光谱分区

1. 红外光谱的分区

通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。

由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中近红外光谱仪

红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。通常所说的红外光谱即指中红外光谱。

2. 红外谱图的分区

按吸收峰的来源,可以将2.5~25μm的红外光谱图大体上分为特征频率区(2.5~7.7μm)以及指纹区(7.7~16.7μm)两个区域。

其中特征频率区中的吸收峰基本是由基团的伸缩振动产生,数目不是很多,但具有很强的特征性,因此在基团鉴定工作上很有价值,主要用于鉴定官能团。如羰基,不论是在酮、酸、酯或酰胺等类化合物中,其伸缩振动总是在5.9μm左右出现一个强吸收峰,如谱图中5.9μm左右有一个强吸收峰,则大致可以断定分子中有羰基。

指纹区的情况不同,该区峰多而复杂,没有强的特征性,主要是由一些单键C-O、C-N和C-X(卤素原子)等的伸缩振动及C-H、O-H等含氢基团的弯曲振动以及C-C骨架振动产生。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区对于区别结构类似的化合物很有帮助。

红外光谱可分为发射光谱和吸收光谱两类。

物体的红外发射光谱主要决定于物体的温度和化学组成,由于测试比较困难,红外发射光谱只是一种正在发展的新的实验技术,如激光诱导荧光。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由红外光谱

其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。

例如水分子有较宽的吸收峰,所以分子的红外吸收光谱属于带状光谱。原子也有红外发射和吸收光谱,但都是线状光谱。

红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动。

含n个原子的分子应有3n-6个简正振动方式;如果是线性分子,只有3n-5个简正振动方式。以非线性三原子分子为例,它的简正振动方式只有三种。在v1和v3振动中,只是化学键的伸长和缩短,称为伸缩振动,而v2的振动方式改变了分子中化学键间的夹角称为变角振动,它们是分子振动的主要方式。分子振动的能量与红外射线的光量子能量正好对应,因此,当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子的振动,而产生红外吸收光谱。

红外光谱仪器

1. 棱镜和光栅光谱仪

属于色散型光谱仪,它的单色器为棱镜或光栅,属单通道测量,即每次只测量一个窄波段的光谱元。转动棱镜或光栅,逐点改变其方位后,可测得光源的光谱分布。

随着信息技术和电子计算机的发展,出现了以多通道测量为特点的新光栅光谱仪

型红外光谱仪,即在一次测量中,探测器就可同时测出光源中各个光谱元的信息,例如,在哈德曼变换光谱仪中就是在光栅光谱仪的基础上用编码模板代替入射或出射狭缝,然后用计算机处理探测器所测得的信号。与光栅光谱仪相比,哈德曼变换光谱仪的信噪比要高些。

2. 傅里叶变换红外光谱仪

它是非色散型的,核心部分是一台双光束干涉仪(图4中虚线框内所示),常用的是迈克耳孙干涉仪。当动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱B(v):

式中I(x)为干涉信号;v为波数;x为两束光的光程差。

傅里叶变换光谱仪的主要优点是:

傅里叶变换红外光谱仪

①多通道测量使信噪比提高;

②没有入射和出射狭缝限制,因而光通量高,提高了仪器的灵敏度;

③以氦、氖激光波长为标准,波数值的精确度可达0.01厘米;

④增加动镜移动距离就可使分辨本领提高;

⑤工作波段可从可见区延伸到毫米区,使远红外光谱的测定得以实傅里叶变换红外光谱仪

现。

上述各种红外光谱仪既可测量发射光谱,又可测量吸收或反射光谱。当测量发射光谱时,以样品本身为光源;测量吸收或反射光谱时,用卤钨灯、能斯脱灯、硅碳棒、高压汞灯(用于远红外区)为光源。所用探测器主要有热探测器和光电探测器,前者有高莱池、热电偶、硫酸三甘肽、氘化硫酸三甘肽等;后者有碲镉汞、硫化铅、锑化铟等。常用的窗片材料有氯化钠、溴化钾、氟化钡、氟化锂、氟化钙,它们适用于近、中红外区。在远红外区可用聚乙烯片或聚酯薄膜。此外,还常用金属镀膜反射镜代替透镜。

近红外概述

近红外 光谱

近红外光谱(NIR)分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。

近红外区域是人们最早发现的非可见光区域。但由于物质在该谱区的倍频和合频吸收信号弱,谱带重叠,解析复杂,受当时的技术水平限制,近红外光谱“沉睡” 了近一个半世纪。直到20世纪60年代,随着商品化仪器的出现及Norris等人所做的大量工作,提出物质的含量与近红外区内多个不同的波长点吸收峰呈线性关系的理论,并利用NIR漫反射技术测定了农产品中的水分、蛋白、脂肪等成分,才使得近红外光谱技术曾经在农副产品分析中得到广泛应用。到60年代中后期,随着各种新的分析技术的出现,加之经典近红外光谱分析技术暴露出的灵敏度低、抗干扰性差的弱点,使人们淡漠了该技术在分析测试中的应用,此后,近红外光谱进入了一个沉默的时期。70年代产生的化学计量学(Chemometrics)学科的重要组成部分——多元校正技术在光谱分析中的成功应用,促进了近红外光谱技术的推广。到80年代后期,随着计算机技术的迅速发展,带动了分析仪器的数字化和化学计量学的发展,通过化学计量学方法在解决光谱信息提取和背景干扰方面取得的良好效果,加之近红外光谱在测样技术上所独有的特点,使人们重新认识了近红外光谱的价值,近红外光谱在各领域中的应用研究陆续展开。进入90年代,近红外光谱在工业领域中的应用全面展开,有关近红外光谱的研究及应用文献几乎呈指数增长,成为发展最快、最引人注目的一门独立的分析技术。由于近红外光在常规光纤中具有良好的传输特性,使近红外光谱在在线分析领域也得到了很好的应用,并取得良好的社会效益和经济效益,从此近红外光谱技术进入一个快速发展的新时期。

近红外定义

近红外光(Near Infrared,NIR)是介于可见光(ⅥS)和中红外光(MIR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。

近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时, 由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度, 就可以确定该组分的含量。

近红外光谱分析

近红外技术分析

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Model)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference method)测得的真实数据。

近红外主要弱点

近红外光谱分析方法的主要弱点是:

建立模型需要大量有代表性且化学值已知的样品。这样,对小批量样品的分析用近红外就得不偿失。

模型的维护也很麻烦,建立的模型并不能一劳永逸,仪器状态、样品代表性变化(如作物的新品种、产地)都会影响测定结果。

模型转移问题尚未很好解决,每台仪器必须自己独立建模,模型不能通用。

近红外对于样品数量比较少的分析也不适用,因为建模成本很高,样品数量少,测试费用很高。

近红外技术要求

近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件:⑴各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求;⑵功能齐全的化学计量学软件,是建立模型和分析的必要工具;⑶准确并适用范围足够宽的模型。这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,为此付出代价的厂家有之,因此,一定要对厂家提供模型与技术支持情况有详细了解。

近红外分析技术分析速度快,是因为光谱测量速度很快,计算机计算结果速度也很快的原因。但近红外分析的效率是取决于仪器所配备的模型的数目,比如测量一张光谱图,如果仅有一个模型,只能得到一个数据,如果建立了10种数据模型,那么,仅凭测量的一张光谱,可以同时得到10种分析数据。

在定标过程中,标准样本数量的多少,直接影响分析结果的准确性。数量太少,不足以反映被测样本群体常态分布规律,数据太多,工作量太大。另外在选择化学分析的样本时,不仅要考虑样品成分含量和梯度,同时要考虑样本的物理、化学、生长地域、品种、生长条件及植物学特性,以提高定标效果。使定标曲线具有广泛的应用范围,对变异范围比较大的样本可以根据特定的筛选原则,进行多个定标,以提高定标效果及检验的准确性。一般来讲,单类纯样本由于样本性质稳定,含化学信息量相对少,因此定标相对容易,如玉米、小麦、大豆等纯样。混合样本样品信息复杂,在本谱区会引起多种基团谱峰的重叠,信息解析困难、定标困难,如畜牧生产中的各种全价饲料、配合饲料、浓缩饲料等。

近红外工作原理

其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程:

⑴在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的代表性。对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回归,主成分回归,偏最小二乘,人工神经网络和拓扑方法等。显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数据有关,还与测量所要求达到的分析精度范围有关。实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM-6500标准)。

⑵在预测过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。

近红外光谱分析技术,其实就是一种间接的相对分析,通过收集大量具有代表性的标准样本,通过严格细致的化学分析测出必要的数据,再通过计算机建立数学模型,即定标,以最大限度反应被测样本群体常态分布规律,然后再通过该数学模型或定标方程,预测未知样品的所需数据。复制搜索

近红外特点

与传统分析技术相比,近红外光谱分析技术具有诸多优点,它能在几分钟内,仅通过对被测样品完成一次近红外光谱的采集测量,即可完成其多项性能指标的测定(最多可达十余项指标)。光谱测量时不需要对分析样品进行前处理;分析过程中不消耗其它材料或破坏样品;分析重现性好、成本低。

无前处理、无污染、方便快捷

近红外光线具有很强的穿透能力,在检测样品时,不需要进行任何前处理,可以穿透玻璃和塑料

包装进行直接检测,也不需要任何化学试剂。和常规分析方法相比,既不会对环境造成污染,又可以节约大量的试剂费用。近红外仪器的测定时间短,几分钟甚至几秒钟就可以完成测试,并打印出结果。

无破坏性

无破坏性是近红外技术一大优点,根据这一优点,近红外技术可以用于果蔬原料及成品的无损检测。可以利用无损检测技术在不破坏产品的前提下,对水果的内在品质进行更多数量的抽样检查。

在线检测

由于近红外技术能够及时快捷的对样品进行检测,在生产中,可以在生产流水线上配置近红外

装置,对原料和成品及半成品进行连续再现检测,有利于及时地发现原料及产品品质的变化,便于及时调控,维持产品质量的稳定。光纤导管和光纤探头的开发应用使远距离检测成为现实。且远距离检测技术特别适用于污染严重、高压、高温等对人体和仪器有损害的环境应用,为近红外网络技术的发展奠定了基础。

对水果的内在品质(可溶性固溶物含量、水果内部病变)进行检测,并且利用该指标将水果进行分级处理。筛选出高品质产品。[1]

多组分同时检测

多组分同时测定,是近红外技术得以大力推广的主要原因。在同一模式下,可以同时测定多种组

分,比如在测小麦的模式中,可以同时测定其蛋白质含量、水分含量、硬度、沉淀值、快速混合比等指标,这样大大简化了测定操作。不同的组分对测定结果都有一定的影响,因为在测定过程中,其它组分对近红外光线也有吸收。

测定速度快

近红外光谱的信息必须由计算机进行数据处理及统计分析一个样品取得光谱数据后可以立即得到定性或定量分析结果整个过程可以在不到2min内完成而且可以通过样品的一张光谱计算出样品的各种组成或性质数据。

投资及操作费用低

近红外光谱仪的光学材料为一般的石英或玻璃仪器价格低操作空间小样品大多数不需要预处理投资及操作费用较低而且仪器的高度自动化降低了操作者的技能要求。

当然,近红外光谱分析也有其固有的缺点:首先,它的测试灵敏度比较低,相对误差比较大;其次,由于是一种间接测量手段,需要用参考方法(一般是化学分析方法)获取一定数量的样品数据,因此测量精度永远不能达到该参考方法的测量精度,建立模型也需要一定的化学计量学知识、费用以及时间;最后,近红外光潜的测量范围,只适合对含氢基团的组分或与这些组分相关的属性进行测定,而且组分的含量一般应大于0.1%才能用近红外进行测定。对于经常的质量监控是十分经济且快速的,但对于偶然做一两次的分析或分散性样品的分析则不太适用。因为建立近红外光谱方法之前,必须投入一定的人力、物力和财力,才能得到一个准确的校正模型。


相关推荐:www.577337.net www.577337.com 诚信在线客户端下载 圣安娜娱乐城官网 www.577337.com 罗湖好玩的地方 车票 滑石粉
以上近红外百科来源于百度百科,如需具体信息可以点击近红外_百度百科.
标题:近红外_近红外百科_近红外互动百度百科
链接:http://www.quxianyi.cn/baike/jinhongwai_691.html
安捷伦科技有限公司
没有了